poj 3074 Sudoku 数独(9*9)+精确覆盖+DLX 只输出一组解

Description

In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example,

.2738..1.
.1...6735
.......29
3.5692.8.
.........
.6.1745.3
64.......
9518...7.
.8..6534.

Given some of the numbers in the grid, your goal is to determine the remaining numbers such that the numbers 1 through 9 appear exactly once in (1) each of nine 3 × 3 subgrids, (2) each of the nine rows, and (3) each of the nine columns.

Input

The input test file will contain multiple cases. Each test case consists of a single line containing 81 characters, which represent the 81 squares of the Sudoku grid, given one row at a time. Each character is either a digit (from 1 to 9) or a period (used to indicate an unfilled square). You may assume that each puzzle in the input will have exactly one solution. The end-of-file is denoted by a single line containing the word “end”.

Output

For each test case, print a line representing the completed Sudoku puzzle.

Sample Input

.2738..1..1...6735.......293.5692.8...........6.1745.364.......9518...7..8..6534.
......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3.
end

Sample Output

527389416819426735436751829375692184194538267268174593643217958951843672782965341
416837529982465371735129468571298643293746185864351297647913852359682714128574936

//


#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 1005
#define V 1020005
int U[V],D[V];
int L[V],R[V];
int C[V];
int H[N],S[N];
int mark[V];
int size,n,m,OK[N],flag;
int tnum[V];
void Link(int r,int c)
{
    S[c]++;C[size]=c;
    U[size]=U[c];D[U[c]]=size;
    D[size]=c;U[c]=size;
    if(H[r]==-1) H[r]=L[size]=R[size]=size;
    else
    {
        L[size]=L[H[r]];R[L[H[r]]]=size;
        R[size]=H[r];L[H[r]]=size;
    }
    mark[size]=r;
    size++;
}
void remove(int c)//删除列
{
    int i,j;
    L[R[c]]=L[c];
    R[L[c]]=R[c];
    for(i=D[c];i!=c;i=D[i])
    {
        for(j=R[i];j!=i;j=R[j])
        {
            U[D[j]]=U[j],D[U[j]]=D[j];
            S[C[j]]--;
        }
    }
}
void resume(int c)
{
    int i,j;
    for(i=U[c];i!=c;i=U[i])
    {
        for(j=L[i];j!=i;j=L[j])
        {
            U[D[j]]=j;D[U[j]]=j;
            S[C[j]]++;
        }
    }
    L[R[c]]=c;
    R[L[c]]=c;
}
void Dance(int k)
{
    int i,j,Min,c;
    if(!R[0])
    {
        flag=1;//标记有解
        sort(OK, OK+k);//如果这样写就只能输出一组解     如果要输出所有解的话,除了tnum数组外还要x和y数组记录精确覆盖里面的第i行在数独中的位置,这样就不用sort了.
        for(int i=0; i<k; i++)
            printf("%d",tnum[mark[OK[i]]]);
        printf("\n");
        return;
    }
    for(Min=N,i=R[0];i;i=R[i])
        if(S[i]<Min) Min=S[i],c=i;
    remove(c);//删除该列
    for(i=D[c];i!=c;i=D[i])
    {
        OK[k]=i;
        for(j=R[i];j!=i;j=R[j])
            remove(C[j]);
        Dance(k+1);
        if(flag) return;//只要一组解
        for(j=L[i];j!=i;j=L[j])
            resume(C[j]);
    }
    resume(c);
}
/*
试构造一个矩阵,其中以行表示概然,以列表示约束。
行所表示的概然状态为(r,c,k)即在棋盘r行c列放置数字k。
列所表示的约束分做四种,即改当前方案r行中是否放置数k,c列中是否放置数k,
(r,c)格中是否放置数k以及块b(即所属区域)是否放置数k。
因此行总共有N*N*N=9*9*9=729个,列总共有9*9*4=324个,要求取若干数字摆放的方案(行),
使每个数字在棋盘的行、列、区域块中(列)只出现一次(1个‘1’),问题转化为729*324的
矩阵的精确覆盖。特别的,(r,c)格的约束保证了我们最后可行解的一定为N*N。
*/
char str[100];
int mat[N][N];
int main()
{
    while(scanf("%s",str)==1&&strcmp(str,"end")!=0)
    {
        memset(mat,0,sizeof(mat));
        m=9*9*4;//列数
        n=0;//构图花费时间比较多  应该直接构图 不用mat数组  这样会快很多
        for(int i=1,pl=0;i<=9;i++)
        {
            for(int j=1;j<=9;j++)
            {
                int row=i;
                int col=j;
                int kuai=(i-1)/3*3+(j-1)/3+1;
                int pos=(i-1)*9+j;
                if(str[pl++]=='.')//可以放数字
                {
                    for(int k=1;k<=9;k++)
                    {
                        ++n;
                        tnum[n]=k;
                        mat[n][(row-1)*9+k]=1;//行
                        mat[n][81+(col-1)*9+k]=1;//列
                        mat[n][162+(kuai-1)*9+k]=1;//块
                        mat[n][243+pos]=1;//位置
                    }
                }
                else//已经放数字
                {
                    int k=str[pl-1]-'0';
                    ++n;
                    tnum[n]=k;
                    mat[n][(row-1)*9+k]=1;//行
                    mat[n][81+(col-1)*9+k]=1;//列
                    mat[n][162+(kuai-1)*9+k]=1;//块
                    mat[n][243+pos]=1;//位置
                }
            }
        }
        //DLX
        for(int i=0;i<=m;i++)
        {
            S[i]=0;
            D[i]=U[i]=i;
            L[i+1]=i;R[i]=i+1;
        }R[m]=0;
        size=m+1;
        memset(H,-1,sizeof(H));
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                if(mat[i][j]) Link(i,j);
            }
        }
        flag=0;
        Dance(0);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值