机器学习sklearn-特征过程及数据预处理

本文详细介绍了机器学习中sklearn库的数据预处理步骤,包括数据无量纲化(归一化和标准化)、缺失值处理、分类型数据编码与哑变量创建、连续性特征的二值化与分段。同时,讲解了特征选择的方法,如过滤法(方差过滤、相关性过滤)、嵌入法和包装法。通过实例展示了如何在实际操作中应用这些技术,提升模型性能。
摘要由CSDN通过智能技术生成

目录

1 基本概念

1.1 sklearn中的的数据预处理和特征工程

2 数据预处理 Preprocessing & Impute

2.1 数据无量纲化

2.1.1 数据归一化

2.1.2 数据标准化

2.2 缺失值

2.3 处理分类型数据:编码和哑变量

2.4 处理连续性特征:二值化与分段

3 特征选择 

3.1 过滤法

3.1.1 方差过滤

3.1.2 相关性过滤

3.2 嵌入法

3.3 包装法

3.4 特征选择总结



1 基本概念

  数据预处理的目的:让数据适应模型,匹配模型的需求。

  特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特征,提取特征以及创造特征来实现。其中创造特征又经常以降维算法的方式实现。

  可能面对的问题有:特征之间有相关性,特征和标签无关,特征太多或太小,或者干脆就无法表现出应有的数据现象或无法展示数据的真实面貌

  特征工程的目的: 1) 降低计算成本, 2) 提升模型上限

1.1 sklearn中的的数据预处理和特征工程

 模块preprocessing:几乎包含数据预处理的所有内容

 模块Impute:填补缺失值专用

 模块 feature_selection :包含特征选择的各种方法的实践
 模块 decomposition :包含降维算法

2 数据预处理 Preprocessing & Impute

2.1 数据无量纲化

  在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“ 无量纲化
   譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经
网络,无量纲化可以加快求解速度;而在距离类模型,譬如 K 近邻, K-Means 聚类中,无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响。(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好。)
   数据的无量纲化可以是线性的,也可以是非线性的。线性的无量纲化包括 中心化 Zero-centered 或者 Mean( subtraction )处理和 缩放处理 Scale )。中心化的本质是让所有记录减去一个固定值,即让数据样本数据平移到 某个位置。缩放的本质是通过除以一个固定值,将数据固定在某个范围之中,取对数也算是一种缩放处理。

2.1.1 数据归一化

当数据 (x) 按照最小值中心化后,再按极差(最大值 - 最小值)缩放,数据移动了最小值个单位,并且会被收敛到[0,1]之间,而这个过程,就叫做 数据归一化 (Normalization ,又称 Min-Max Scaling) 。注意, Normalization 是归一化,不是正则化,真正的正则化是regularization ,不是数据预处理的一种手段。归一化之后的数据服从正态分布,公式如下:

  在 sklearn 当中,我们使用 preprocessing.MinMaxScaler 来实现这个功能。 MinMaxScaler 有一个重要参数feature_range,控制我们希望把数据压缩到的范围,默认是[0,1]。
  
from sklearn.preprocessing import MinMaxScaler


data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

#实现归一化
scaler=MinMaxScaler() #实例化
scaler=scaler.fit(data)   #训练
result=scaler.transform(data) #导出数据
print(result)
print(scaler.inverse_transform(result))#逆转 显示原来的数据

 调整归一化的范围

scaler=MinMaxScaler(feature_range=[2,4]) #实例化
scaler=scaler.fit(data)   #训练
result=scaler.transform(data) #导出数据
print(result)

使用numpy实现归一化

import numpy as np

#使用numpy实现归一化

X = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])#将数据类型改为ndarray
#归一化 是针对列做的操作 指定axis=0
X_normal=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
print(X_normal)

#逆转归一化
X_returned = X_normal* (X.max(axis=0) - X.min(axis=0)) + X.min(axis=0)
print(X_returned)

2.1.2 数据标准化

  preprocessing.StandardScaler,当数据(x)按均值(μ)中心化后,再按标准差(σ)缩放,数据就会服从为均值为0,方差为1的正态分布(即标准正态分布),而这个过程,就叫做数据标准化(Standardization,又称Z-score normalization),公式如下:

from sklearn.preprocessing import StandardScaler

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler=StandardScaler()
scaler.fit(data)
x_std=scaler.transform(data)
print(x_std)
print(x_std.mean())
print(x_std.std())
  对于 StandardScaler MinMaxScaler 来说,空值 NaN 会被当做是缺失值,在 fifit 的时候忽略,在 transform 的时候保持缺失NaN 的状态显示。并且,尽管去量纲化过程不是具体的算法,但在 fifit 接口中,依然只允许导入至少二维数组,一维数组导入会报错。
  
  大多数机器学习算法中,会选择 StandardScaler
  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值