神经网络随手记-1

目录

sigmod函数主要缺点

Relu 线性整流函数

Leaky ReLU

 随机梯度下降法


sigmod函数主要缺点

在输入值变大时,梯度会变得非常小甚至消失,这意味着,在训练神经网络时,如果发生这种饱和,我们将无法根据梯度来更新权重。

函数输出不是以 0 为中心的,会降低权重更新的效率。

Relu 线性整流函数

当输入为正时,不存在梯度饱和问题。

计算速度快得多。ReLU 函数中只存在线性关系,因此它的计算速度比 sigmoid 和 tanh 更快。

但存在Dead ReLU 问题。当输入为负时,所有负值部分的斜率都为0,ReLU 完全失效。

Leaky ReLU

在Relu函数左半部分增加了梯度。

 随机梯度下降法

在每次更新时用1个样本,随机也就是说我们用样本中的一个例子来近似我所有的样本,来调整θ,因而随机梯度下降会带来一定的问题,因为计算得到的并不是准确的一个梯度,对于最优化问题,凸问题,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近。但是相比于批量梯度,这样的方法更快,更快收敛,虽然不是全局最优,但很多时候是我们可以接受的。

总结:

优点:计算速度快。

缺点:可能会陷入局部最优,收敛性能不好,对所有可计算的参数都使用单一的学习率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值