机器学习sklearn-逻辑回归

目录

L0范数,L1范数,L2范数

sigmond函数

损失函数

penalty和C参数

逻辑回归中的特征工程 

梯度下降


L0范数,L1范数,L2范数

L0范数是指向量中非0的元素的个数。如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0。

L1范数是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算子”(Lasso regularization)。

任何的规则化算子,如果他在Wi=0的地方不可微,并且可以分解为一个“求和”的形式,那么这个规则化算子就可以实现稀疏。这说是这么说,W的L1范数是绝对值,|w|在w=0处是不可微。

L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优化求解特性而被广泛应用。

L2范数是指向量各元素的平方和然后求平方根。我们让L2范数的规则项||W||2最小,可以使得W的每个元素都很小,都接近于0,但与L1范数不同,它不会让它等于0,而是接近于0,这里是有很大的区别的哦。而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。

制了参数很小,实际上就限制了多项式某些分量的影响很小,这样就相当于减少参数个数。

sigmond函数

Sigmoid 函数是一个 S 型的函数,当自变量 z 趋近正无穷时,因变量 g(z) 趋近于 1 ,而当 z 趋近负无穷时, g(z) 趋近于0 ,它能够将任何实数映射到 (0,1) 区间,使其可用于将任意值函数转换为更适合二分类的函数。
因为这个性质, Sigmoid 函数也被当作是归一化的一种方法,与我们之前学过的 MinMaxSclaer 同理,是属于数据预处理中的“ 缩放 功能,可以将数据压缩到 [0,1] 之内。区别在于, MinMaxScaler 归一化之后,是可以取到0 1 的(最大值归一化后就是 1 ,最小值归一化后就是 0 ),但 Sigmoid 函数只是无限趋近于 0 1

损失函数

损失函数仅仅针对有参数的模型而言,没有参数的模型就不存损失函数,比如KNN,决策树。

损失函数小,模型在训练集上表现优异,拟合充分,参数优秀。
损失函数大,模型在训练集上表现差劲,拟合不足,参数糟糕。
我们追求损失函数的最小值,让模型在训练集上表现最优,可能会引发另一个问题:如果模型在训练集上表示优秀,却在测试集上表现糟糕,模型就会过拟合。虽然逻辑回归和线性回归是天生欠拟合的模型,但我们还是需要控制过拟合的技术来帮助我们调整模型,对逻辑回归中过拟合的控制,通过正则化来实现。

penalty和C参数

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值