Performance Evaluation of Channel Decoding With Deep Neural Networks——论文复现总结

本文总结了使用MLP、CNN、LSTM三种神经网络进行信道解码的性能。实验表明,LSTM在解码性能上最佳但计算开销最大。神经网络存在饱和长度限制,结构化编码能解决长码训练难题。CNN和MLP在饱和长度为16时出现欠拟合,而RNN的饱和长度为32。在计算时间上,RNN最耗时,CNN略高于MLP,性能与计算时间之间存在权衡。
摘要由CSDN通过智能技术生成

1、神经网络解码器具有单次解码和并行计算的能力
2、MLP、CNN、LSTM三者中LSTM具有最佳的解码性能,但以最大的计算开销为代价
3、此外,我们发现每种类型的神经网络都存在一个饱和长度,这是由于它们的学习能力受到限制而引起的。
4、结构化代码比随机代码更好训练,并解决了基于深度学习的解码器难以训练长代码的挑战。因此,提出将极坐标编码图划分为子块,每个子码字的解码器分别进行训练。

5、具体的流程就是先随机生成基带数据X,利用极码编码器对X进行编码,最后得到Y,训练的时候神经网络的输入是X,X尖尖,Y。通过神经网络来学习X尖尖与X的特征。训练好了之后的测试阶段就只需要将得到的X尖尖与原始的X算个误码率就可以了。

当然,其中还涉及到了信噪比这些,就是训练的时候用不同的信噪比去训练,测试的时候选者训练时候最好效果的SNR来测试。

6、本实验由两部分组成,无噪声部分和有噪声部分(当然无噪声部分就不用来考虑信噪比了。)

7、实验我们用来判断神经网络解码性能好坏的一个用作对比的数据就是MAP(最大似然估计)
8、K=4 无噪声
在这里插入图片描述
随着训练次数的增加,BER逐渐减小,最终达到一个稳定值,代表了深度神经网络的收敛性。对于所有三个深层神经网络,可以观察到较低的p会导致较高的BER,只有当p = 100%时BER才会降至0,这表明神经

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值