End-to-End Learning From Spectrum Data: A DL Approach for Wireless Signal Identification(阅读笔记)

<<频谱数据的端到端学习:频谱监测应用中无线信号识别的深度学习方法>>

Abstract

这篇论文介绍了端到端学习频谱数据——基于深神经网络的频谱监测应用中的新复杂无线信号识别方法的伞术语。

端到端学习允许(本文方案的优点):

  1. 直接从简单的无线信号表示中自动获取特征,而不需要设计手工制作的专家特征,如高阶循环矩
  2. 训练无线信号分类器端到端步骤,消除了复杂的多阶段机器学习处理信道的需求。

本文的目的是提出了一个端到端学习应用于频谱监测的概念框架,并且系统的引入了一个通用的方法能够简单的设计和实现无线信道分类。另外我们还调查了无线数据表示方式的选择在各种频谱监测任务中的重要性。(三种表示方法:IQ,幅度相位、频域表示)

具体是从两方面来研究的:

  1. 调制识别
  2. 无线技术干扰检测

对于每个案例研究,针对以下无线信号表示对三个卷积神经网络进行评估:时间IQ数据幅度/相位表示和频域表示。

通过我们的分析,我们证明了无线数据表示的准确性取决于需要区分的无线信号的特殊性和相似性,不同的数据表示会导致结果不准确,误差达到29%。实验结果表明,与IQ和频域数据相比,使用幅度/相位表示来识别调制格式可以在中到高信噪比下分别提高2%和12%的性能。对于检测干扰的任务,频域表示优于幅度/相位和IQ数据表示,最高可达20%。

introduction

背景:
无线网络目前正在经历一场戏剧性的演变。观察到的一些趋势是随着频谱需求的增加,无线设备的数量和多样性不断增加。

出现的问题:
不幸的是,无线电频谱是一种稀缺资源。因此,频谱的特定部分被大量使用,而其他部分[1]被严重未利用。例如,未经许可的频段被过度利用,并受到跨技术干扰[2]。

监测和了解频谱资源的使用情况,将成为5G提高和规范无线电频谱利用的重要资产,这是无可争辩的。然而,在如此复杂的无线系统中监测频谱使用需要在一个较宽的频率范围内进行分布式感知,从而导致无线电频谱数据泛滥[3]。从大量复杂的光谱数据中提取有意义的光谱使用信息需要复杂和先进的算法。

这为新的创新频谱接入方案和新的识别机制的发展铺平了道路,这些机制将提供对无线电环境的感知。例如,技术识别、调制类型识别和干扰源检测对干扰缓解策略至关重要,以继续有效利用稀缺的频谱资源,并使异构无线网络能够共存。

解决方法:
在本文中,我们研究了基于频谱数据的端到端学习,以此作为一种统一的方法来解决下一代无线网络面临的频谱管理、利用率和监管效率低下的问题。

无论目标是识别一种技术或一种特定的调制类型,识别干扰源或无干扰的频率通道,我们认为,各种问题可以被视为一般问题类型,我们称之为无线信号识别,这是机器学习分类技术的一个自然目标。端到端这一术语意味着提取无线信号特征和学习无线信号分类器的过程由一个单一的学习过程组成。更一般的,端到端学习是指在处理架构中,将输入(即感知的无线信号的数据表示)连接到期望的输出(即预测的信号类型)的整个管道完全从数据[4]中学习。

A 本文贡献(contributions)
本文全面介绍了利用频谱数据进行端到端学习的方法。本文的主要贡献如下:

  1. 确定了频谱监控的潜在端到端学习用例。特别地,提出了两个类别。第一类是需要检测频谱机会和频谱共享的用例,例如在认知无线电和新兴认知物联网中;第二类是需要检测无线电辐射源的用例,例如频谱调节
  2. 为了对这一跨学科主题做一个初步的背景介绍,我们简要介绍了机器学习/深度学习,并讨论了它们在频谱监测中的作用。然后,定义了适用于频谱监测应用的深度学习参考模型。
  3. 提出了端到端学习的概念性框架,并对用于无线信号分类任务的收集频谱数据、设计无线信号表示、形成训练数据和训练深度神经网络的方法进行了全面的概述。
  4. 为了验证该方法,对两个案例进行了实验:(I)调制识别和(Ii)无线技术干扰检测,这两个案例展示了无线数据表示形式的选择对所给结果的影响。对于调制识别,考虑以下调制技术:BPSK(二进制相移键控)、QPSK(正交相移键控)、m-PSK(相移键控,对于m=8)、m-QAM(正交幅度调制,对于m=16和64)、CPFSK(连续相移键控)、GFSK(高斯频移键控)和m-PAM(对于m=4的脉冲幅度调制)。在无线技术识别方面,分析了在非授权频段运行的三种有代表性的技术:IEEE802.11b/g、IEEE802.15.4和IEEE802.15.1。

论文的其余部分组织如下。第一节的其余部分介绍了相关工作。第二节介绍了建议方法的激励方案。第三节介绍了与机器学习/深度学习相关的基本概念,最后介绍了它们应用于频谱监测场景的高级处理流水线。第四部分介绍了无线信号分类的端到端学习方法。在第五节中,将该方法应用于两个场景,并对实验结果进行了讨论。第六节讨论了与未来端到端频谱管理系统的实施和部署相关的开放挑战。第七部分为结束语。

B Related work(contributions)

(1)传统的信号识别
以前在无线通信中与信号识别相关的研究主要基于用于通信的信号处理工具,例如循环平稳特征检测,有时还结合传统的机器学习技术(例如支持向量机(SVM-support vector machines)、决策树、k近邻(k-NN)、神经网络(NNS)等)。事实证明,这些专门解决方案的设计非常耗时,因为它们通常依赖于手动提取需要大量领域知识和工程的专家特征。

(2)把深度学习应用于信号分类
受深度学习,特别是卷积神经网络(CNN)在图像识别、语音识别和机器翻译[8]等一系列问题上的最新进展和显著成功的推动,无线通信工程师最近使用类似的方法来改进无线网络中信号识别任务的技术水平。该领域的先驱之一是O‘Shea等人。[9],他证明了在时域同相和正交(IQ)数据上训练的CNN显著优于传统的基于专家特征的自动调制识别方法(例如基于循环矩的特征)和传统的分类器(例如决策树、k-NNS、支持向量机、NNS和朴素贝叶斯)。
Selim等人。[10]提出用幅相差数据训练CNN分类器,使其能够高精度地检测雷达信号的存在。Akeret等人。[11]提出了一种精确检测射电天文学中射频干扰的新技术,该技术通过对从射电望远镜获取的2D时域数据对CNN进行训练来精确地检测射电天文学中的射频干扰。施密特等人。[12]提出了一种使用基于频域数据训练的CNN来识别非许可频段中的干扰的新方法[12]。多种无线技术(例如数字视频广播(DVB)、全球移动通信系统(GSM)、长期演进(LTE)等)。在[13]中使用对平均幅度快速傅立叶变换(FFT)数据的深度学习进行了高精度的分类。
这些个人的工作集中在特定的深度学习应用与无线信号分类使用特定的数据演示。他们没有提供详细的必要方法来理解如何将相同的方法应用到其他潜在的用例,他们也没有提供足够的信息作为选择无线数据表示的指南。这些信息对于那些想要复制现有尝试、在此基础上构建或产生新的应用程序想法的人来说是必要的。

(3)深度学习应用于无线网路
最近,O 'Shea和Hoydis[14]概述了深度学习在无线通信中的应用现状和未来的潜力。Y ao等人提出了一个统一的移动感知数据深度学习框架。然而,这些研究都没有关注频谱监测场景和训练无线信号分类器的基础数据模型。
为了弥补这些不足,本文提出了基于频谱数据的端到端学习:一种深度学习框架,用于统一解决频谱监测应用中的各种无线信号分类问题。据我们所知,本文是第一个详细阐述(I)采集、转换和表示频谱数据的方法,(Ii)设计和实现用于无线信号识别问题的数据驱动的深度学习分类器的方法,以及(Iii)同时研究不同分类问题的几种数据表示方法的第一篇综合性工作。本文描述的技术方法是深度跨学科和系统化的,需要计算机科学家、无线通信工程师、信号处理和机器学习专家的专业知识协同作用,最终目的是开拓新的领域,提高人们对这一新兴跨学科研究领域的认识。最后,本文恰逢其时,(I)机器学习领域的最新进展,(Ii)用于加速训练的计算进步和并行化,以及(Iii)提供大量光谱数据的努力,为新的光谱监测解决方案铺平了道路。
(4)Notation和术语

  1. 下文中,用普通字体表示标量值变量(如 x or X)。
  2. 矩阵就使用粗体大写表示 X
  3. 向量使用粗体小写字母来表示x,另外其有时可能表现为矩阵的行向量或列向量(即xk是第k列向量)
  4. 另外()T表示对矩阵或者向量转置
  5. ()*表示复数的共轭
  6. 在这里插入图片描述表示向量x的Lp范数。

II. 频谱数据端到端学习的特征用例

频谱数据的端到端学习是一种新方法,可以直接从简单的无线信号表示自动学习功能,而无需设计手工制作的专家功能,如高阶循环时刻。术语端到端是指学习过程可以在一个端到端步骤中训练无线信号分类器的事实,这消除了对复杂的多级专家机学习处理信道(管道)的需求。

在深入进入频谱数据的端到端学习的概念之前,我们首先考虑图1的架构,其中两个激励情景说明了所提出的方法的特征使用情况。
在这里插入图片描述
A.检测光谱机会和频谱共享

  1. 认知无线电(cognitive Radio)
    不断增长的无线电频谱需求加上目前占主导地位的固定频谱分配政策[16],激发了认知无线电(CR)和动态频谱访问(DSA)的概念,旨在改善无线电频谱的利用。CR网络(CRN)是一种智能无线通信系统,能够感知其无线电环境,即频谱机会,并通过与环境[17]交互和学习,智能地适应其工作参数。通过这种方式,CRN可以推断频谱占用率来识别未被占用的频带(空白/频谱洞),并以机会主义的方式与许可用户(主要用户(PU-primary users))共享它们。
    图1a)显示了数据驱动的CRN的基本操作过程。首先,CR用户间歇性地感知其周围的无线电环境,并通过控制信道将其感知结果报告给附近的基站(BS)。然后,BS将请求转发到后端数据中心(DC),该后端数据中心将来自多个CR用户的众包感知信息组合到频谱图中。DC推断频谱使用以确定PU(一种特征无线信号)的存在,并将频谱可用性信息扩散回认知用户。为此,DC首先基于感测报告离线学习CNN模型,然后使用该模型来区分频谱空洞和占用的频率信道。
  1. 认知物联网
    物联网(IoT)范式设想了一个设备/物体/事物“始终连接”到互联网的世界。在这个世界上,各种各样的无线技术和标准在未经许可的频段上运行,这给可用的频谱带来了巨大的压力。不断增长的无线频谱需求带来了共存、交叉技术干扰和无干扰频谱、稀缺等通信挑战。为了应对这些挑战,最近的研究工作提出了基于cr的物联网,以实现异构无线网络之间的动态频谱共享。
    图1 a)描述了这种情况。可以看出,CR-IoT设备配备了认知功能,允许它们搜索无干扰频谱ÿ
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值