POJ-2429 GCD & LCM Inverse

题目:

http://poj.org/problem?id=2429

题意:

给出gcd与lcm求原来两数,有多解时找出使得a+b最小的那个。

思路:

模版题,

lcm/gcd==(a/gcd)*(b/gcd).

所以求出lcm/gcd的所有质因子,自由组合成两组就是答案。

再dfs枚举所有情况找出a+b最小的情况。

代码:

#define N 112345
#define T 10

long long  n,m;
long long  flag,ave,ans,res,len,ans1,ans2;

long long mod_mul(long long a,long long b,long long n)
{
    long long res = 0;
    while(b)
    {
        if(b&1)    res = (res + a) % n;
        a = (a + a) % n;
        b >>= 1;
    }
    return res;
}
long long mod_exp(long long x,long long k,long long mod)
{
    long long ans = 1;
    while(k)
    {
        if(k & 1) ans = mod_mul(ans, x, mod);
        x = mod_mul(x, x, mod);
        k >>= 1;
    }
    return ans;
}
bool Miller_Rabin(long long n)
{
    if(n == 2 || n == 3 || n == 5 || n == 7 || n == 11)    return true;
    if(n == 1 || !(n%2) || !(n%3) || !(n%5) || !(n%7) || !(n%11))    return false;

    long long x, pre, u;
    int i, j, k = 0;
    u = n - 1;

    while(!(u&1))
    {
        k++;
        u >>= 1;
    }

    for(i = 0; i < T; ++i)
    {
        x = rand()%(n-2) + 2;
        if((x%n) == 0)
            continue;
        x = mod_exp(x, u, n);
        pre = x;
        for(j = 0; j < k; ++j)
        {
            x = mod_mul(x,x,n);
            if(x == 1 && pre != 1 && pre != n-1)
                return false;
            pre = x;
        }
        if(x != 1)
            return false;
    }
    return true;
}

long long factor[1000],factor2[1000];
int sum,sum2;

long long gcd(long long a,long long b)
{
    if(a==0)return 1;
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}
long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
        i++;
        x0=(mod_mul(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k){y=x0;k+=k;}
    }
}
void findfac(long long x)
{
	if(x==1)return ;
    if(Miller_Rabin(x))
    {
        factor[sum++]=x;
        return;
    }
    long long p=x;
    while(p>=x)
        p=Pollard_rho(p,rand()%(x-1)+1);
    findfac(p);
    findfac(x/p);
}
void dfs(int num,long long now)
{
    if(sum2==num)
    {
        if(now&&ans>now+m/n/now)
            ans=now+m/n/now,res=now;
        return ;
    }
    dfs(num+1,now);
    dfs(num+1,now*factor2[num]);
}
int main()
{
    long long i,j,k,kk,t,x,y,z;
    srand((long long)time(0));
    while(scanf("%lld%lld",&n,&m)!=EOF&&n)
    {
        x=m/n;
        sum=0;
        findfac(x);

        ans=2e63;
        sum2=0;
        sort(factor,factor+sum);
        factor2[0]=factor[0];
        for(int i=0;i<sum;i++)
        {
            if(factor[i]==factor[i+1])
                factor2[sum2]*=factor[i+1];
            else
                factor2[++sum2]=factor[i+1];
        }
        dfs(0,1);
        if(res*n<m/res)
            printf("%lld %lld\n",res*n,m/res);
        else
            printf("%lld %lld\n",m/res,res*n);
    }
    return 0;
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值