信息与通信的数学基础——第四章 解析函数的级数表示

1. 复数项级数

1.1 复数序列

定义
z n z_n zn为复数,称 { z n } n = 1 , 2 , ⋯ \{z_n \}_{n=1,2,\cdots} {zn}n=1,2,为复数序列

极限
存在自然数N,使得当n > N时,总有 ∣ z n − α ∣ < ϵ |z_n-\alpha| < \epsilon znα<ϵ,则称 { z n } \{z_n\} {zn}收敛于复数 α \alpha α,记作:
lim ⁡ n → + ∞ z n = α \lim_{n \to +\infty} z_n = \alpha n+limzn=α

复数序列极限存在的充要条件
z n = x n + i y n , a = α + i β z_n=x_n+iy_n,a=\alpha+i\beta zn=xn+iyn,a=α+iβ,则
lim ⁡ n → + ∞ R e z = α ,   lim ⁡ n → + ∞ I m z = β \lim_{n \to +\infty} Rez = \alpha , \ \lim_{n \to +\infty} Imz = \beta n+limRez=α, n+limImz=β

1.2 复数项级数

定义
∑ n = 1 + ∞ z n = z 1 + z 2 + ⋯ \sum_{n=1}^{+\infty} z_n = z_1+z_2+\cdots n=1+zn=z1+z2+

部分和
s n = ∑ k = 1 n z k = z 1 + z 2 + ⋯ + z n s_n = \sum_{k=1}^{n} z_k = z_1+z_2+\cdots + z_n sn=k=1nzk=z1+z2++zn

复数项级数收敛的充要条件
级数 ∑ z n \sum z_n zn收敛的充要条件是,级数 ∑ x n , ∑ y n \sum x_n,\sum y_n xn,yn都收敛
理解:级数收敛 ⟷ \longleftrightarrow 实部与虚部均收敛

复数项级数收敛的必要条件
lim ⁡ n → + ∞ z n = 0 \lim_{n \to +\infty} z_n = 0 n+limzn=0
在这里插入图片描述

1.3 复变函数项级数

定义
设复变函数 f n ( z ) f_n(z) fn(z)在区域G内有定义,则复变函数项级数:
∑ n = 1 + ∞ f n ( z ) = f 1 ( z ) + f 2 ( z ) + ⋯ + f n ( z ) + ⋯ \sum_{n=1}^{+\infty} f_n(z) = f_1(z)+f_2(z)+\cdots+f_n(z)+\cdots n=1+fn(z)=f1(z)+f2(z)++fn(z)+

部分和
s n ( z ) = ∑ k = 1 n f k ( z ) s_n(z) = \sum_{k=1}^{n} f_k(z) sn(z)=k=1nfk(z)

收敛定义
(1)在 z 0 z_0 z0点收敛
lim ⁡ n → + ∞ s n ( z 0 ) = s ( z 0 ) \lim_{n \to +\infty} s_n(z_0) = s(z_0) n+limsn(z0)=s(z0)
(2)在区域D内收敛
∀ z ∈ D lim ⁡ n → + ∞ s n ( z ) = s ( z ) \forall z \in D \\ \lim_{n \to +\infty} s_n(z) = s(z) zDn+limsn(z)=s(z)

2. 幂级数

2.1 幂级数的概念

定义
复变函数在a处的幂级数展开
∑ n = 0 + ∞ a n ( z − a ) n = a 0 + a 1 ( z − a ) + a 2 ( z − a ) 2 + ⋯ \sum_{n=0}^{+\infty} a_n(z-a)^n = a_0+a_1(z-a)+a_2(z-a)^2+\cdots n=0+an(za)n=a0+a1(za)+a2(za)2+
当a=0时的幂级数展开为:
∑ n = 0 + ∞ a n z n = a 0 + a 1 z + a 2 z 2 + ⋯ \sum_{n=0}^{+\infty} a_nz^n = a_0+a_1z+a_2z^2+\cdots n=0+anzn=a0+a1z+a2z2+

Abel定理
对于幂级数 ∑ a n z n \sum a_nz^n anzn
(1)若级数在 z 0 z_0 z0处收敛,则它在 ∣ z ∣ < ∣ z 0 ∣ |z| < |z_0| z<z0处绝对收敛
(2)若级数在 z 0 z_0 z0处发散,则它在 ∣ z ∣ > ∣ z 0 ∣ |z| > |z_0| z>z0处发散

2.2 收敛圆与收敛半径

定义
C R C_R CR的半径为R
(1)称圆域 ∣ z ∣ < R |z| < R z<R为收敛圆
(2)R为收敛半径
在这里插入图片描述

2.2.1 求收敛半径

对于幂级数 ∑ a n z n \sum a_nz^n anzn
1. 比值法
lim ⁡ n → + ∞ ∣ a n + 1 ∣ ∣ a n ∣ = λ R = 1 λ \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lambda \\ R = \frac{1}{\lambda} n+limanan+1=λR=λ1

2. 根值法
lim ⁡ n → + ∞ ∣ c n ∣ n = ρ R = 1 ρ \lim_{n \to +\infty} \sqrt[n]{|c_n|} = \rho \\ R = \frac{1}{\rho} n+limncn =ρR=ρ1

2.2.2 求幂级数的收敛半径与收敛圆[9]

在这里插入图片描述

2.3 幂级数的性质

运算性质
f ( z ) = lim ⁡ n → + ∞ a n z n , ∣ z ∣ < r 1 , g ( z ) = lim ⁡ n → + ∞ b n z n , ∣ z ∣ < r 2 f(z)=\lim_{n \to +\infty}a_nz^n,|z| <r_1,g(z)=\lim_{n \to +\infty}b_nz^n,|z| <r_2 f(z)=limn+anzn,z<r1g(z)=limn+bnzn,z<r2 r = m i n ( r 1 , r 2 ) r = min(r_1,r_2) r=min(r1,r2),则:
f ( z ) ± g ( z ) = lim ⁡ n → + ∞ ( a n ± b n ) z n f ( z ) ⋅ g ( z ) = ∑ n = 0 + ∞ ( a 0 b n + a 1 b n − 1 + ⋯ + a 0 b n ) f(z) \pm g(z) = \lim_{n \to +\infty} (a_n \pm b_n) z^n \\ f(z)\cdot g(z) = \sum_{n=0}^{+\infty} (a_0b_n+a_1b_{n-1}+\cdots+a_0b_n) f(z)±g(z)=n+lim(an±bn)znf(z)g(z)=n=0+(a0bn+a1bn1++a0bn)

2.4 把函数展开为幂级数

(1) 1 z − b ⟷ ∑ n = 0 + ∞ a n ( z − a ) n \frac{1}{z-b} \longleftrightarrow \sum_{n=0}^{+\infty} a_n(z-a)^n zb1n=0+an(za)n
步骤
① 将 1 z − b \frac{1}{z-b} zb1转换为 1 g ( a , b ) ( z − a ) \frac{1}{g(a,b)(z-a)} g(a,b)(za)1的格式
② 利用 1 1 − z = ∑ n = 0 + ∞ z n \frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n 1z1=n=0+zn进行转换,注意收敛圆半径
在这里插入图片描述

3. 泰勒级数

3.1 泰勒定理

定理
函数f(z)在区域D内解析,C为D的边界, z 0 ∈ D z_0 \in D z0D R = m i n ∣ z − z 0 ∣ R=min|z-z_0| R=minzz0,则当 ∣ z − z 0 ∣ < R |z - z_0| < R zz0<R时,有:
f ( z ) = ∑ n = 0 + ∞ a n ( z − z 0 ) n a n = 1 2 π i ∮ l f ( z ) ( z − z 0 ) n + 1 d z = f ( n ) ( z 0 ) n ! f(z) = \sum_{n=0}^{+\infty} a_n(z-z_0)^n \\ a_n = \frac{1}{2 \pi i} \oint_l \frac{f(z)}{(z-z_0)^{n+1}}dz=\frac{f^{(n)}(z_0)}{n!} f(z)=n=0+an(zz0)nan=2πi1l(zz0)n+1f(z)dz=n!f(n)(z0)

特点
(1)只能在 ∣ z − z 0 ∣ < R |z-z_0| < R zz0<R的圆域上展开,因为幂级数的收敛域必须是圆域
(2)f(z)在D内解析, z 0 ∈ D z_0 \in D z0D

3.2 将函数展开为泰勒级数

1. 直接展开法
利用公式求解 a n a_n an,再带入泰勒级数中
a n = 1 2 π i ∮ l f ( z ) ( z − z 0 ) n + 1 d z = f ( n ) ( z 0 ) n ! f ( z ) = ∑ n = 0 + ∞ a n ( z − z 0 ) n a_n = \frac{1}{2 \pi i} \oint_l \frac{f(z)}{(z-z_0)^{n+1}}dz=\frac{f^{(n)}(z_0)}{n!} \\ f(z) = \sum_{n=0}^{+\infty} a_n(z-z_0)^n an=2πi1l(zz0)n+1f(z)dz=n!f(n)(z0)f(z)=n=0+an(zz0)n

2. 间接展开法
利用已知的展开式,通过有理运算、代换运算、求导积分等方法展开

3.2.1 利用泰勒级数把函数展开为幂级数[10]

步骤
① 确定函数奇点,求收敛半径与收敛域
② 利用导数、积分、代换等方法,转化为常见函数形式,通过间接展开法求解

在这里插入图片描述
在这里插入图片描述

3.3 常见函数的级数展开

(1)幂级数 ∑ n = 0 + ∞ z n = 1 + z + z 2 + ⋯ \sum_{n=0}^{+\infty} z^n = 1+z+z^2+\cdots n=0+zn=1+z+z2+的和函数
1 1 − z = ∑ n = 0 + ∞ z n = 1 + z + z 2 + ⋯ ( ∣ z ∣ < 1 ) \frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n = 1+z+z^2+\cdots(|z| < 1) 1z1=n=0+zn=1+z+z2+(z<1)

在这里插入图片描述
(2)指数 f ( z ) = e z f(z)=e^z f(z)=ez
e z = ∑ n = 0 + ∞ z n n ! e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!} ez=n=0+n!zn

在这里插入图片描述
(3)三角函数 s i n ( x ) . c o s ( x ) sin(x).cos(x) sin(x).cos(x)
在这里插入图片描述

4. 洛朗级数

4.1 含有负幂次项的“幂级数”

存在奇点时,泰勒展开只能在固定的圆域内展开为z的幂级数,而其他解析区域无法展开为z的幂级数

引入
当|z| > 1时,有 1 z < 1 \frac{1}{z} < 1 z1<1,从而可得:
1 1 − z = − 1 z 1 1 − 1 z = − 1 z − 1 z 2 − 1 z 3 ⋯ \frac{1}{1-z}=-\frac{1}{z} \frac{1}{1-\frac{1}{z}}=-\frac{1}{z}-\frac{1}{z^2}-\frac{1}{z^3}\cdots 1z1=z11z11=z1z21z31

4.2 洛朗定理

定义
函数f(z)在圆环域D: R 1 < ∣ z − z 0 ∣ < R 2 R_1 < |z-z_0| < R_2 R1<zz0<R2内解析,则f(z)一定能在此圆环域中展开为:
f ( z ) = ∑ − ∞ + ∞ a n ( z − z 0 ) n a n = 1 2 π i ∮ C f ( z ( z − z 0 ) d z f(z) = \sum_{-\infty}^{+\infty} a_n(z-z_0)^n \\ a_n = \frac{1}{2 \pi i} \oint_C \frac{f(z}{(z-z_0)}dz f(z)=+an(zz0)nan=2πi1C(zz0)f(zdz

其中,C为圆环域内绕 z 0 z_0 z0的任何一条简单闭曲线
在这里插入图片描述
比较
泰勒展开的区域是一个圆域,洛朗展开区域是个圆环。通常洛朗展开含多个奇点

4.2.1 将函数展开为洛朗级数[11]

1. 直接展开法
a n = 1 2 π i ∮ C f ( z ( z − z 0 ) d z f ( z ) = ∑ − ∞ + ∞ a n ( z − z 0 ) n a_n = \frac{1}{2 \pi i} \oint_C \frac{f(z}{(z-z_0)}dz \\ f(z) = \sum_{-\infty}^{+\infty} a_n(z-z_0)^n an=2πi1C(zz0)f(zdzf(z)=+an(zz0)n

2. 间接展开法
根据唯一性,利用已知的展开式,通过代换、求导、积分等方式展开。
两种方式在求展开前都需要根据函数的奇点位置,将复平面分为若干解析环。 n个奇点有n+1个解析环

步骤
① 确定函数奇点,并划分解析环
② 分段进行函数展开,对于在圆域内的函数采用泰勒展开,否则提出其到数如 1 z \frac{1}{z} z1,转换为|z| < 1圆域内的函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冠long馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值