1. 正弦交流电
周期电压和电流
如果电流或电压每经过一定时间T就重复变化一次,则此种电流 、电压称为周期性交流电流或电压。
正弦电压和电流
如果在电路中电源的大小与方向均随时间按正弦规律变化,由此产生的电流、电压大小和方向也是正弦的,这样的电路称为正弦交流电路。
1.1 正弦信号的三要素
瞬时值
i
(
t
)
=
I
m
cos
(
w
t
+
θ
i
)
i(t)=I_m \cos(wt+\theta_i)
i(t)=Imcos(wt+θi)
(1)最大值
变量名称必须大写,下标加m.如
I
m
,
U
m
I_m,U_m
Im,Um
(2)角频率
w
=
2
π
T
=
2
π
f
w=\frac{2\pi}{T}=2 \pi f
w=T2π=2πf
(3)初相位
t
=
0
t= 0
t=0 时的相位,称为初相位或初相角。(
π
≤
θ
≤
π
\pi \leq\theta \leq \pi
π≤θ≤π)
(可以理解为离O点最近的最高峰,当位于负轴时,θ > 0。反之,θ < 0 )
题目[1]:求正弦信号的三要素
1.2 相位差
定义
两个同频率的正弦量的相位之差或初相位之差称为相位差
θ
=
θ
u
−
θ
i
\theta = \theta_u-\theta_i
θ=θu−θi
情况
① 当 θ > 0 时:u超前i,u比i先到达最大值
② 当
θ
<
0
\theta < 0
θ<0时:u滞后i,i超前u
θ
\theta
θ角
题目[2]:计算正弦量的相位差
注意
① 只有两个角频率w相同的正弦量才能计算相位差。
② 相位差的范围是:
−
π
≤
θ
≤
π
-\pi \leq \theta \leq \pi
−π≤θ≤π
③ 奇变偶不变,符号看象限
sin
(
θ
+
π
/
2
)
=
cos
(
θ
)
,
sin
(
θ
−
π
/
2
)
=
−
cos
(
θ
)
cos
(
θ
+
π
/
2
)
=
−
sin
(
θ
)
,
cos
(
θ
−
π
/
2
)
=
sin
(
θ
)
\sin(\theta+\pi/2)=\cos(\theta) \ , \ \sin(\theta-\pi/2)=-\cos(\theta) \\ \cos(\theta+\pi/2)=-\sin(\theta) \ , \ \cos(\theta-\pi/2)=\sin(\theta)
sin(θ+π/2)=cos(θ) , sin(θ−π/2)=−cos(θ)cos(θ+π/2)=−sin(θ) , cos(θ−π/2)=sin(θ)
1.3 周期性电流、电压的有效值
定义
周期性电流、电压的瞬时值随时间而变,为了衡量平均效果工程上采用有效值来表示。有效值也称均方根值。
I
=
1
T
∫
0
T
i
2
(
t
)
d
t
U
=
1
T
∫
0
T
u
2
(
t
)
d
t
I=\sqrt{\frac{1}{T}\int_0^Ti^2(t)dt} \\ U=\sqrt{\frac{1}{T}\int_0^Tu^2(t)dt}
I=T1∫0Ti2(t)dtU=T1∫0Tu2(t)dt
区分有效值、最大值、瞬时值
(1)符号:有效值(I),最大值(
I
m
I_m
Im),瞬时值(i)
(2)用途:
① 工程上说的正弦电压、电流一般指有效值,如设备铭牌额定值、电网的电压等级等。
② 测量中,交流测量仪表指示的电压、电流一般为有效值。
③ 绝缘水平、耐压值指的是最大值。因此,在考虑电器设备的耐压水平时应按最大值考虑。
题目[3]:有效值最大值瞬时值的相互转换
2. 正弦量的向量表示
2.1 复数的表示形式
{ A = ∣ A ∣ e j θ = ∣ A ∣ ∠ θ A = ∣ A ∣ e j θ = ∣ A ∣ ( cos θ + j sin θ ) \begin{cases} A = |A|e^{j\theta}=|A|\angle \theta \\ A = |A|e^{j\theta} = |A|(\cos \theta + j\sin \theta) \end{cases} {A=∣A∣ejθ=∣A∣∠θA=∣A∣ejθ=∣A∣(cosθ+jsinθ)
2.2 复数的常见运算
(1)加法运算
将向量模式
A
∠
θ
A\angle \theta
A∠θ表示为
a
+
b
j
a+bj
a+bj模式
(2)乘法与除法运算:模长与角度的变化
A
1
⋅
A
2
=
∣
A
1
∣
∣
A
2
∣
∠
(
θ
1
+
θ
2
)
A
1
A
2
=
∣
A
1
∣
∣
A
2
∣
∠
(
θ
1
−
θ
2
)
A_1 \cdot A_2 = |A_1||A_2| \angle(\theta_1+\theta_2) \\ \frac{A_1}{A_2} = \frac{|A_1|}{|A_2|} \angle (\theta_1-\theta_2)
A1⋅A2=∣A1∣∣A2∣∠(θ1+θ2)A2A1=∣A2∣∣A1∣∠(θ1−θ2)
(3)旋转因子
e
j
θ
e^{j\theta}
ejθ
复数A与旋转因子相乘,相当于A逆时针旋转一个角度
A
⋅
e
j
θ
A \cdot e^{j \theta}
A⋅ejθ
几种常用的旋转因子
e
j
θ
=
{
j
,
θ
=
π
2
−
j
,
θ
=
−
π
2
−
1
,
θ
=
±
π
e^{j\theta} = \begin{cases} j \ , \ \theta=\frac{\pi}{2} \\ -j \ , \ \theta=-\frac{\pi}{2} \\ -1 \ , \ \theta=\pm \pi \end{cases}
ejθ=⎩⎪⎨⎪⎧j , θ=2π−j , θ=−2π−1 , θ=±π
2.3 正弦量的相量表示
(1)正弦电流的相量表示
{
i
(
t
)
=
I
m
cos
(
w
t
+
θ
i
)
e
j
w
t
=
cos
(
w
t
)
+
j
sin
(
w
t
)
→
i
(
t
)
=
R
e
[
I
m
e
j
(
w
t
+
θ
)
]
=
R
e
[
I
m
e
j
θ
e
j
w
t
]
\begin{cases} i(t)=I_m \cos(wt+\theta_i) \\ e^{jwt} = \cos(wt)+j\sin(wt) \\ \end{cases} \to i(t)=Re[I_me^{j(wt+\theta)}]=Re[I_me^{j\theta}e^{jwt}]
{i(t)=Imcos(wt+θi)ejwt=cos(wt)+jsin(wt)→i(t)=Re[Imej(wt+θ)]=Re[Imejθejwt]
定义
I
˙
m
=
I
m
⋅
e
j
θ
=
I
m
∠
θ
\dot{I}_m=I_m \cdot e^{j\theta}=I_m\angle \theta
I˙m=Im⋅ejθ=Im∠θ是最大值相量 ,则:
i
(
t
)
=
R
e
[
I
m
˙
e
j
w
t
]
=
R
e
[
2
I
˙
e
j
w
t
]
u
(
t
)
=
R
e
[
U
m
˙
e
j
w
t
]
=
R
e
[
2
U
˙
e
j
w
t
]
I
m
˙
=
2
I
˙
,
U
m
˙
=
2
U
˙
i(t)=Re[\dot{I_m}e^{jwt}]=Re[\sqrt{2}\dot{I}e^{jwt}] \\ u(t)=Re[\dot{U_m}e^{jwt}]=Re[\sqrt{2}\dot{U}e^{jwt}] \\ \dot{I_m} = \sqrt{2}\dot{I} \ , \ \dot{U_m} = \sqrt{2}\dot{U}
i(t)=Re[Im˙ejwt]=Re[2I˙ejwt]u(t)=Re[Um˙ejwt]=Re[2U˙ejwt]Im˙=2I˙ , Um˙=2U˙
(2)注意
① 相量不等于正弦信号,他们之间存在相互关系
i
(
t
)
→
I
m
˙
e
j
w
t
i
(
t
)
=
R
e
[
I
m
˙
e
j
w
t
]
=
R
e
[
2
I
˙
e
j
w
t
]
i(t) \to \dot{I_m}e^{jwt}\\ i(t) = Re[\dot{I_m}e^{jwt}]=Re[\sqrt{2}\dot{I}e^{jwt}]
i(t)→Im˙ejwti(t)=Re[Im˙ejwt]=Re[2I˙ejwt]
② 微分规则
d
a
(
t
)
d
t
↔
j
w
A
˙
\frac{da(t)}{dt} \leftrightarrow jw\dot{A}
dtda(t)↔jwA˙
题目[4]:根据正弦的相量表示获得瞬时表达
(1)相量转换为瞬时值
①
I
˙
m
=
I
m
⋅
e
j
θ
=
I
m
∠
θ
\dot{I}_m=I_m \cdot e^{j\theta}=I_m\angle \theta
I˙m=Im⋅ejθ=Im∠θ , 由相量可以获得正弦量的初相位与有效值(最大值)
② 根据公式计算
w
=
2
π
f
=
2
π
T
w=2\pi f=\frac{2\pi}{T}
w=2πf=T2π
③ 将初相位、有效值、角频率带入公式:
i
(
t
)
=
I
m
cos
(
w
t
+
θ
i
)
=
2
I
cos
(
w
t
+
θ
i
)
i(t)=I_m \cos(wt+\theta_i)=\sqrt{2}I \cos(wt+\theta_i)
i(t)=Imcos(wt+θi)=2Icos(wt+θi)
(2)瞬时值转换为相量
2.4 相量图
在复平面上用向量表示相量的图
i
(
t
)
=
2
I
cos
(
w
t
+
θ
i
)
→
I
˙
=
I
∠
θ
i
u
(
t
)
=
2
U
cos
(
w
t
+
θ
u
)
→
U
˙
=
U
∠
θ
u
i(t)=\sqrt{2}I \cos(wt+\theta_i) \to \dot{I}=I\angle \theta_i\\ u(t)=\sqrt{2}U \cos(wt+\theta_u) \to \dot{U}=U\angle \theta_u
i(t)=2Icos(wt+θi)→I˙=I∠θiu(t)=2Ucos(wt+θu)→U˙=U∠θu
题目[5]:利用相量表示计算同频正弦量的加减
方法:
(1)将正弦量表示为相量表示:
u
(
t
)
↔
U
˙
u(t) \leftrightarrow \dot{U}
u(t)↔U˙
(2)将正弦量运算转化为相量运算
(3)运算结束后,将相量表示转化为正弦表示(参考题目[4])
3. 元件和电路定理的相量表示
电阻元件 | 电感元件 | 电容元件 | |
---|---|---|---|
VCR | U ˙ = R I ˙ \dot{U}=R\dot{I} U˙=RI˙ | U ˙ = L w j I ˙ \dot{U}=Lwj\dot{I} U˙=LwjI˙ | U ˙ = 1 C w j I ˙ \dot{U}=\frac{1}{Cwj}\dot{I} U˙=Cwj1I˙ |
相位关系 | U c = U i U_c=U_i Uc=Ui | U c = U i + π 2 U_c=U_i+\frac{\pi}{2} Uc=Ui+2π | U c = U i − π 2 U_c=U_i-\frac{\pi}{2} Uc=Ui−2π |
有效值 | U = R I U=RI U=RI | U = L w I U=LwI U=LwI | U = − 1 C w I U=-\frac{1}{Cw}I U=−Cw1I |
3.1 电阻元件VCR的相量形式
(1)时域形式
i
(
t
)
=
2
I
cos
(
w
t
+
θ
i
)
u
(
t
)
=
2
I
R
cos
(
w
t
+
θ
i
)
i(t)=\sqrt{2}I \cos(wt+\theta_i) \\ u(t)=\sqrt{2}IR \cos(wt+\theta_i)
i(t)=2Icos(wt+θi)u(t)=2IRcos(wt+θi)
(2)相量形式
I
˙
=
I
∠
θ
i
U
˙
=
I
R
∠
θ
i
U
˙
=
R
I
˙
\dot{I}=I\angle \theta_i \\ \dot{U} = IR\angle \theta_i \\ \dot{U} = R\dot{I}
I˙=I∠θiU˙=IR∠θiU˙=RI˙
理解:
① VCR相量表示:
U
˙
=
R
I
˙
\dot{U} = R\dot{I}
U˙=RI˙
② 相位关系:U, I的初相位相同
θ
u
=
θ
i
\theta_u = \theta_i
θu=θi
(3)瞬时功率
瞬时功率以2w交变。始终大于0.
p
R
=
U
R
I
[
1
+
cos
2
(
w
t
+
θ
i
)
]
p_R = U_RI[1+\cos 2(wt+\theta_i)]
pR=URI[1+cos2(wt+θi)]
3.2 电感元件VCR的相量形式
(1)时域形式
i
(
t
)
=
2
I
cos
(
w
t
+
θ
i
)
u
L
(
t
)
=
L
d
i
d
t
=
−
2
L
w
I
sin
(
w
t
+
θ
i
)
=
2
L
w
I
cos
(
w
t
+
θ
i
+
π
2
)
i(t)=\sqrt{2}I \cos(wt+\theta_i) \\ u_L(t)=L\frac{di}{dt}=-\sqrt{2}LwI\sin(wt+\theta_i)=\sqrt{2}LwI\cos(wt+\theta_i+\frac{\pi}{2})
i(t)=2Icos(wt+θi)uL(t)=Ldtdi=−2LwIsin(wt+θi)=2LwIcos(wt+θi+2π)
(2)相量形式
I
˙
=
I
∠
θ
i
U
˙
=
L
w
I
∠
θ
i
+
π
2
\dot{I}=I\angle \theta_i \\ \dot{U} = LwI \angle \theta_i+\frac{\pi}{2}
I˙=I∠θiU˙=LwI∠θi+2π
理解:
① VCR相量表示:
U
˙
=
L
w
j
I
˙
\dot{U} = Lwj\dot{I}
U˙=LwjI˙
② 相位关系:电压U比电流I领先90°:
θ
u
=
θ
i
+
π
2
\theta_u = \theta_i+\frac{\pi}{2}
θu=θi+2π
(3)瞬时功率
瞬时功率以2w交变。始终大于0.
p
C
=
U
R
I
[
1
+
cos
2
(
w
t
+
θ
i
)
]
p_C = U_RI[1+\cos 2(wt+\theta_i)]
pC=URI[1+cos2(wt+θi)]
3.3 电容元件VCR的相量形式
(1)时域形式
u
(
t
)
=
2
U
cos
(
w
t
+
θ
u
)
i
(
t
)
=
C
d
u
d
t
=
−
2
C
w
I
sin
(
w
t
+
θ
u
)
=
2
C
w
U
cos
(
w
t
+
θ
u
+
π
2
)
u(t)=\sqrt{2}U \cos(wt+\theta_u) \\ i(t)=C\frac{du}{dt}=-\sqrt{2}CwI\sin(wt+\theta_u)=\sqrt{2}CwU\cos(wt+\theta_u+\frac{\pi}{2})
u(t)=2Ucos(wt+θu)i(t)=Cdtdu=−2CwIsin(wt+θu)=2CwUcos(wt+θu+2π)
(2)相量形式
U
˙
=
U
∠
θ
u
I
˙
=
C
w
U
∠
(
θ
+
π
2
)
\dot{U} = U \angle \theta_u \\ \dot{I} = CwU \angle (\theta+\frac{\pi}{2})
U˙=U∠θuI˙=CwU∠(θ+2π)
理解
① VCR相量表示:
I
˙
=
C
w
j
U
˙
→
U
˙
=
−
j
1
C
w
I
˙
\dot{I} = Cwj\dot{U} \to \dot{U}=-j\frac{1}{Cw}\dot{I}
I˙=CwjU˙→U˙=−jCw1I˙
② 相位关系:电流I比电压U领先90°:
θ
u
=
θ
i
+
π
2
\theta_u = \theta_i+\frac{\pi}{2}
θu=θi+2π
(3)瞬时功率
瞬时功率以2w交变。始终大于0.
p
L
=
U
m
sin
(
w
+
θ
i
)
I
m
cos
(
w
t
+
θ
i
)
p_L=U_m\sin(w+\theta_i)I_m\cos(wt+\theta_i)
pL=Umsin(w+θi)Imcos(wt+θi)
题目[6]:利用VCR的相量表示计算交流电流、电压
4. 基尔霍夫定律的相量形式
在正弦稳态电路中,各支路电流都是同频率的正弦量,只是振幅和初相不同。
(1)KCL
对任一节点,各支路电流相量和恒为0
∑
k
=
1
n
I
˙
k
m
=
0
\sum_{k=1}^{n} \dot{I}_{km} = 0
k=1∑nI˙km=0
(2)KVL
对任一回路,所有支路电压相量和恒为0
∑
k
=
1
n
U
˙
k
m
=
0
\sum_{k=1}^{n} \dot{U}_{km} = 0
k=1∑nU˙km=0
问题[7]:KVL、KCL在正弦稳态电路中的应用
步骤
Step1: 将瞬时值用相量表达替代
Step2: 利用KVL, KCL的相量形式列方程
Step3: 将相量表示转化为瞬时表示
4. 阻抗和导纳模型
元件 | 阻抗Z | 导纳Y |
---|---|---|
电阻 | R R R | 1 R \frac{1}{R} R1 |
电容 | 1 j C w \frac{1}{jCw} jCw1 | j C w jCw jCw |
电感 | j L w jLw jLw | 1 j L w \frac{1}{jLw} jLw1 |
(1)阻抗
正弦交流电路中元件的电压相量与电流相量之比。
Z
=
U
˙
m
I
˙
m
=
U
˙
I
˙
=
U
I
e
j
(
θ
u
−
θ
i
)
Z
=
∣
Z
∣
cos
ϕ
z
+
j
∣
Z
∣
sin
ϕ
z
=
R
+
j
X
Z=\frac{\dot{U}_m}{\dot{I}_m}=\frac{\dot{U}}{\dot{I}}=\frac{U}{I}e^{j(\theta_u-\theta_i)} \\ Z = |Z| \cos \phi_z+j|Z| \sin \phi_z=R+jX
Z=I˙mU˙m=I˙U˙=IUej(θu−θi)Z=∣Z∣cosϕz+j∣Z∣sinϕz=R+jX
电阻
R
=
∣
Z
∣
cos
ϕ
z
R=|Z| \cos \phi_z
R=∣Z∣cosϕz
电抗
X
=
∣
Z
∣
sin
ϕ
z
X = |Z| \sin \phi_z
X=∣Z∣sinϕz
阻抗的模: 电压有效值 / 电流有效值
∣
Z
∣
=
U
I
|Z| = \frac{U}{I}
∣Z∣=IU
阻抗角: 电压初相位 - 电流初相位
ϕ
z
=
θ
u
−
θ
i
\phi_z = \theta_u-\theta_i
ϕz=θu−θi
4.1 三种基本元件的阻抗
① 电阻:
Z
=
U
I
e
j
(
θ
u
−
θ
i
)
=
R
Z = \frac{U}{I}e^{j(\theta_u-\theta_i)}=R
Z=IUej(θu−θi)=R
② 电容:
Z
=
U
˙
I
˙
=
1
j
C
w
=
−
j
1
C
w
=
j
X
C
Z = \frac{\dot{U}}{\dot{I}}=\frac{1}{jCw}=-j\frac{1}{Cw}=jX_C
Z=I˙U˙=jCw1=−jCw1=jXC,其中
X
C
=
−
1
C
w
X_C=-\frac{1}{Cw}
XC=−Cw1
③ 电感:
Z
=
U
˙
I
˙
=
j
L
w
=
j
X
L
Z = \frac{\dot{U}}{\dot{I}}=jLw=jX_L
Z=I˙U˙=jLw=jXL,其中
X
L
=
L
w
X_L=Lw
XL=Lw
4.2 RLC串联电路
借助阻抗,可以获得如下VCR公式:
U
˙
=
(
Z
R
+
Z
L
+
Z
C
)
I
˙
=
Z
I
˙
Z
=
Z
R
+
Z
L
+
Z
C
=
R
+
j
(
L
w
−
1
C
w
)
=
R
+
j
X
\dot{U}=(Z_R+Z_L+Z_C)\dot{I}=Z\dot{I} \\ Z = Z_R+Z_L+Z_C = R+j(Lw-\frac{1}{Cw})=R+jX
U˙=(ZR+ZL+ZC)I˙=ZI˙Z=ZR+ZL+ZC=R+j(Lw−Cw1)=R+jX
理解:
① 当
w
L
=
1
C
w
,
X
=
0
wL = \frac{1}{Cw},X=0
wL=Cw1,X=0时:电路为电阻性,电压电流同向
② 当
w
L
>
1
C
w
,
X
>
0
wL > \frac{1}{Cw},X>0
wL>Cw1,X>0时:电路为感性,电压领先电流
③ 当
w
L
<
1
C
w
,
X
<
0
wL < \frac{1}{Cw},X<0
wL<Cw1,X<0时:电路为容性,电流领先电压
(2)导纳
阻抗的倒数。记为Y
Y
=
1
Z
=
I
˙
U
˙
=
I
U
e
(
θ
i
−
θ
u
)
Y
=
∣
Y
∣
cos
ϕ
y
+
j
∣
Y
∣
sin
ϕ
y
=
G
+
j
B
Y=\frac{1}{Z}=\frac{\dot{I}}{\dot{U}}=\frac{I}{U}e^{(\theta_i-\theta_u)} \\ Y = |Y|\cos \phi_y + j|Y|\sin \phi_y=G+jB
Y=Z1=U˙I˙=UIe(θi−θu)Y=∣Y∣cosϕy+j∣Y∣sinϕy=G+jB
电导
G
=
∣
Y
∣
cos
ϕ
y
G = |Y|\cos \phi_y
G=∣Y∣cosϕy
电纳
B
=
∣
Y
∣
sin
ϕ
y
B=|Y|\sin \phi_y
B=∣Y∣sinϕy
导纳的模
∣
Y
∣
=
I
U
|Y|=\frac{I}{U}
∣Y∣=UI
导纳角
ϕ
y
=
θ
i
−
θ
u
\phi_y = \theta_i-\theta_u
ϕy=θi−θu
4.3 三种基本元件的导纳
① 电阻:
Y
=
I
U
e
j
(
θ
i
−
θ
u
)
=
1
R
Y = \frac{I}{U}e^{j(\theta_i-\theta_u)}=\frac{1}{R}
Y=UIej(θi−θu)=R1
② 电容:
Y
=
I
˙
U
˙
=
j
C
w
=
j
B
Y = \frac{\dot{I}}{\dot{U}}=jCw=jB
Y=U˙I˙=jCw=jB,其中
B
C
=
C
w
B_C=Cw
BC=Cw
③ 电感:
Y
=
I
˙
U
˙
=
−
j
1
L
w
Y = \frac{\dot{I}}{\dot{U}}=-j\frac{1}{Lw}
Y=U˙I˙=−jLw1,其中
B
L
=
−
1
L
w
B_L=-\frac{1}{Lw}
BL=−Lw1
4.4 RLC并联电路
借助导纳,可以获得如下VCR公式:
I
˙
=
(
Y
R
+
Y
L
+
Y
C
)
U
˙
=
Y
U
˙
Y
=
Y
R
+
Y
L
+
Y
C
=
1
R
+
j
(
C
w
−
1
L
w
)
\dot{I}=(Y_R+Y_L+Y_C)\dot{U}=Y\dot{U} \\ Y = Y_R+Y_L+Y_C = \frac{1}{R}+j(Cw-\frac{1}{Lw})
I˙=(YR+YL+YC)U˙=YU˙Y=YR+YL+YC=R1+j(Cw−Lw1)
理解:
① 当
C
w
=
1
L
w
,
Y
=
0
Cw = \frac{1}{Lw},Y=0
Cw=Lw1,Y=0时:电路为电阻性,电压电流同向
② 当
C
w
>
1
L
w
,
Y
>
0
Cw > \frac{1}{Lw},Y>0
Cw>Lw1,Y>0时:电路为容性,电流领先电压
③ 当
C
w
<
1
L
w
,
Y
<
0
Cw < \frac{1}{Lw},Y<0
Cw<Lw1,Y<0时:电路为容性,电压领先电流
4.5 阻抗和导纳的串、并联
(1)串联
等效阻抗:
Z
=
Z
1
+
Z
2
=
(
R
1
+
R
2
)
+
j
(
X
1
+
X
2
)
Z=Z_1+Z_2=(R_1+R_2)+j(X_1+X_2)
Z=Z1+Z2=(R1+R2)+j(X1+X2)
等效导纳:
Y
=
Y
1
Y
2
Y
1
+
Y
2
Y=\frac{Y_1Y_2}{Y_1+Y_2}
Y=Y1+Y2Y1Y2
分压公式:
U
˙
i
=
Z
i
Z
U
˙
\dot{U}_i=\frac{Z_i}{Z}\dot{U}
U˙i=ZZiU˙
(2)并联
等效阻抗:
Z
=
Z
1
Z
2
Z
1
+
Z
2
Z=\frac{Z_1Z_2}{Z_1+Z_2}
Z=Z1+Z2Z1Z2
等效导纳:
Y
=
Y
1
+
Y
2
Y=Y_1+Y_2
Y=Y1+Y2
分流公式:
I
˙
i
=
Y
i
Y
I
˙
\dot{I}_i=\frac{Y_i}{Y}\dot{I}
I˙i=YYiI˙
5. 正弦稳态电路相量模型
把时域模型中的电源元件用相量模型代替,无源元件用阻抗或导纳代替,电流、电压用相量表示(其参考方向与原电路相同),这样得到的电路模型称为相量模型
5.1 欧姆定律的相量形式
U
˙
=
I
˙
Z
,
I
˙
=
Y
U
˙
\dot{U}=\dot{I}Z \ , \ \dot{I}=Y\dot{U}
U˙=I˙Z , I˙=YU˙
5.2 复阻抗和复导纳的等效互换
Z
=
∣
Z
∣
∠
ϕ
z
,
Y
=
∣
Y
∣
∠
ϕ
z
Z=|Z|\angle \phi_z \ , \ Y=|Y|\angle \phi_z
Z=∣Z∣∠ϕz , Y=∣Y∣∠ϕz
(1)阻抗 --> 导纳
Y
=
1
Z
=
R
−
j
X
R
2
+
X
2
=
G
+
j
B
→
{
G
=
R
R
2
+
X
2
B
=
−
X
R
2
+
X
2
Y = \frac{1}{Z}=\frac{R-jX}{R^2+X^2}=G+jB \to \begin{cases} G=\frac{R}{R^2+X^2} \\ B=\frac{-X}{R^2+X^2} \end{cases}
Y=Z1=R2+X2R−jX=G+jB→{G=R2+X2RB=R2+X2−X
(2)导纳 --> 阻抗
Z
=
1
Y
=
G
−
j
B
G
2
+
B
2
=
R
+
j
X
→
{
R
=
G
G
2
+
B
2
B
=
−
B
G
2
+
B
2
Z = \frac{1}{Y}=\frac{G-jB}{G^2+B^2}=R+jX \to \begin{cases} R=\frac{G}{G^2+B^2} \\ B=\frac{-B}{G^2+B^2} \end{cases}
Z=Y1=G2+B2G−jB=R+jX→{R=G2+B2GB=G2+B2−B
问题[8]:求串(并)联电路的等效并(串)联电路
步骤:
Step1: 求出等效前电路的阻抗(串联)、导纳(并联)
Step2: 求导获得等效电路对应的阻抗或导纳
Step3: 列出等效电路对应公式,从而计算求得等效的阻值、电容或电感系数
5.3 相量图解法
可根据电路,直接定性绘出相量图,再根据图形利用几何、三角等关系求得所需答案