遗传算法

1、遗传算法理论的由来

我们先从查尔斯·达尔文的一句名言开始:能够生存下来的往往不是最强大的物种,也不是最聪明的物种,而是最能适应环境的物种。

你也许在想:这句话和遗传算法有什么关系?其实遗传算法的整个概念就基于这句话。

让我们用一个基本例子来解释 :

 

我们先假设一个情景,现在你是一国之王,为了让你的国家免于灾祸,你实施了一套法案:

 

  • 你选出所有的好人,要求其通过生育来扩大国民数量。
  • 这个过程持续进行了几代。
  • 你将发现,你已经有了一整群的好人。

这个例子虽然不太可能,但是我用它是想帮助你理解概念。也就是说,我们改变了输入值(比如:人口),就可以获得更好的输出值(比如:更好的国家)。现在,我假定你已经对这个概念有了大致理解,认为遗传算法的含义应该和生物学有关系。那么我们就快速地看一些小概念,这样便可以将其联系起来理解。

3、遗传算法定义

 

首先我们回到前面讨论的那个例子,并总结一下我们做过的事情。

 

  1. 首先,我们设定好了国民的初始人群大小。
  2. 然后,我们定义了一个函数,用它来区分好人和坏人。
  3. 再次,我们选择出好人,并让他们繁殖自己的后代。
  4. 最后,这些后代们从原来的国民中替代了部分坏人,并不断重复这一过程。

 

遗传算法实际上就是这样工作的,也就是说,它基本上尽力地在某种程度上模拟进化的过程。

因此,为了形式化定义一个遗传算法,我们可以将它看作一个优化方法,它可以尝试找出某些输入,凭借这些输入我们便可以得到最佳的输出值或者是结果。遗传算法的工作方式也源自于生物学,具体流程见下图:

                             

4、遗传算法具体步骤

 

为了让讲解更为简便,我们先来理解一下著名的组合优化问题「背包问题」。如果你还不太懂,这里有一个我的解释版本。

 

比如,你准备要去野游 1 个月,但是你只能背一个限重 30 公斤的背包。现在你有不同的必需物品,它们每一个都有自己的「生存点数」(具体在下表中已给出)。因此,你的目标是在有限的背包重量下,最大化你的「生存点数」。

                             

4.1 初始化

 

这里我们用遗传算法来解决这个背包问题。第一步是定义我们的总体。总体中包含了个体,每个个体都有一套自己的染色体。

 

我们知道,染色体可表达为 2 进制数串,在这个问题中,1 代表接下来位置的基因存在,0 意味着丢失。(译者注:作者这里借用染色体、基因来解决前面的背包问题,所以特定位置上的基因代表了上方背包问题表格中的物品,比如第一个位置上是 Sleeping Bag,那么此时反映在染色体的『基因』位置就是该染色体的第一个『基因』。)

                                                

现在,我们将图中的 4 条染色体看作我们的总体初始值。

4.2 适应度函数

 

接下来,让我们来计算一下前两条染色体的适应度分数。对于 A1 染色体 [100110] 而言,有:

 

类似地,对于 A2 染色体 [001110] 来说,有:

对于这个问题,我们认为,当染色体包含更多生存分数时,也就意味着它的适应性更强。

因此,由图可知,染色体 1 适应性强于染色体 2。

4.3 选择

 

现在,我们可以开始从总体中选择适合的染色体,来让它们互相『交配』,产生自己的下一代了。这个是进行选择操作的大致想法,但是这样将会导致染色体在几代之后相互差异减小,失去了多样性。因此,我们一般会进行「轮盘赌选择法」(Roulette Wheel Selection method)。

想象有一个轮盘,现在我们将它分割成 m 个部分,这里的 m 代表我们总体中染色体的个数。每条染色体在轮盘上占有的区域面积将根据适应度分数成比例表达出来。

     

基于上图中的值,我们建立如下「轮盘」。

现在,这个轮盘开始旋转,我们将被图中固定的指针(fixed point)指到的那片区域选为第一个亲本。然后,对于第二个亲本,我们进行同样的操作。有时候我们也会在途中标注两个固定指针,如下图:

通过这种方法,我们可以在一轮中就获得两个亲本。我们将这种方法成为「随机普遍选择法」(Stochastic Universal Selection method)。

4.4 交叉

 

在上一个步骤中,我们已经选择出了可以产生后代的亲本染色体。那么用生物学的话说,所谓「交叉」,其实就是指的繁殖。现在我们来对染色体 1 和 4(在上一个步骤中选出来的)进行「交叉」,见下图:

这是交叉最基本的形式,我们称其为「单点交叉」。这里我们随机选择一个交叉点,然后,将交叉点前后的染色体部分进行染色体间的交叉对调,于是就产生了新的后代。

如果你设置两个交叉点,那么这种方法被成为「多点交叉」,见下图:

4.5 变异

 

如果现在我们从生物学的角度来看这个问题,那么请问:由上述过程产生的后代是否有和其父母一样的性状呢?答案是否。在后代的生长过程中,它们体内的基因会发生一些变化,使得它们与父母不同。这个过程我们称为「变异」,它可以被定义为染色体上发生的随机变化,正是因为变异,种群中才会存在多样性。

 

下图为变异的一个简单示例:

变异完成之后,我们就得到了新为个体,进化也就完成了,整个过程如下图:

 

在进行完一轮「遗传变异」之后,我们用适应度函数对这些新的后代进行验证,如果函数判定它们适应度足够,那么就会用它们从总体中替代掉那些适应度不够的染色体。这里有个问题,我们最终应该以什么标准来判断后代达到了最佳适应度水平呢?

 

一般来说,有如下几个终止条件:

  1. 在进行 X 次迭代之后,总体没有什么太大改变。
  2. 我们事先为算法定义好了进化的次数。
  3. 当我们的适应度函数已经达到了预先定义的值。

 

好了,现在我假设你已基本理解了遗传算法的要领,那么现在让我们用它在数据科学的场景中应用一番。

 

5、遗传算法的应用

 

5.1 特征选取

 

试想一下每当你参加一个数据科学比赛,你会用什么方法来挑选那些对你目标变量的预测来说很重要的特征呢?你经常会对模型中特征的重要性进行一番判断,然后手动设定一个阈值,选择出其重要性高于这个阈值的特征。

 

那么,有没有什么方法可以更好地处理这个问题呢?其实处理特征选取任务最先进的算法之一就是遗传算法。

 

我们前面处理背包问题的方法可以完全应用到这里。现在,我们还是先从建立「染色体」总体开始,这里的染色体依旧是二进制数串,「1」表示模型包含了该特征,「0 表示模型排除了该特征」。

 

不过,有一个不同之处,即我们的适应度函数需要改变一下。这里的适应度函数应该是这次比赛的的精度的标准。也就是说,如果染色体的预测值越精准,那么就可以说它的适应度更高。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值