LRU原理及其实现(C++)

LRU原理

在一般标准的操作系统教材里,会用下面的方式来演示 LRU 原理,假设内存只能容纳3个页大小,按照 7 0 1 2 0 3 0 4 的次序访问页。假设内存按照栈的方式来描述访问时间,在上面的,是最近访问的,在下面的是,最远时间访问的,LRU就是这样工作的。

但是如果让我们自己设计一个基于 LRU 的缓存,这样设计可能问题很多,这段内存按照访问时间进行了排序,会有大量的内存拷贝操作,所以性能肯定是不能接受的。

那么如何设计一个LRU缓存,使得放入和移除都是 O(1) 的,我们需要把访问次序维护起来,但是不能通过内存中的真实排序来反应,有一种方案就是使用双向链表。
 

基于 HashMap 和 双向链表实现 LRU

整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点。

LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 head 代表双向链表的表头,tail 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。

下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:
 

save("key1", 7)
save("key2", 0)
save("key3", 1)
save("key4", 2)
get("key2")
save("key5", 3)
get("key2")
save("key6", 4)

相应的 LRU 双向链表部分变化如下:

总结一下核心操作的步骤:

save(key, value),首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。如果不存在,需要构造新的节点,并且尝试把节点塞到队头,如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。
get(key),通过 HashMap 找到 LRU 链表节点,因为根据LRU 原理,这个节点是最新访问的,所以要把节点插入到队头,然后返回缓存的值。
 

完整基于 C++的代码参考如下

#include <iostream>
#include <map>
using namespace std;

struct DLinkList
{
    int key, val;
    DLinkList *pre;
    DLinkList *next;
    DLinkList()
        : key(0), val(0), pre(NULL), next(NULL)
    {
    }
    DLinkList(int _key, int _val)
        : key(_key), val(_val), pre(NULL), next(NULL)
    {
    }
};

class LRUCache
{
private:
    map<int, DLinkList *> maap;
    DLinkList *head;
    DLinkList *tail;
    int size;
    int cap;

public:
    LRUCache(int capicity)
    {
        head = new DLinkList();
        tail = new DLinkList();
        head->next = tail;
        tail->pre = head;
        size = 0;
        cap = capicity;
    }

    int Get(int key)
    {
        if (!maap.count(key))
        {
            return -1;
        }
        DLinkList *node = maap[key];
        MoveToHead(node);
        return node->val;
    }
    void MoveToHead(DLinkList *node)
    {
        ReMoveNode(node);
        AddToHead(node);
    }
    //从双链表中删除
    void ReMoveNode(DLinkList* node)
    {
        node->pre->next=node->next;
        node->next->pre=node->pre;
    }
    void AddToHead(DLinkList* node)
    {
        node->next=head->next;
        node->pre=head;
        head->next->pre=node;
        head->next=node;

    }
    void  Save(int key,int value)
    {
        if(maap.count(key))
        {
            DLinkList* node=maap[key];
            MoveToHead(node);
            node->val=value;
        }
        else
        {
            DLinkList* node=new DLinkList(key,value);
            AddToHead(node);
            maap[key]=node;
            size++;
            if(size>cap)
            {
                DLinkList* delNode=ReMoveTail();
                maap.erase(delNode->key);
                delete delNode;
                size--;
            }

        }
        
    }
    DLinkList* ReMoveTail()
    {
        DLinkList* node=tail->pre;
        ReMoveNode(node);
        return node;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值