密度矩阵重整化群

密度矩阵重整化群(DMRG)是解决量子系统计算中参数无穷大问题的一种方法,它采用粗粒化策略减少参数量。iDMRG用于无限系统,通过构建enlarged block和superblock,并利用密度矩阵进行截断。fDMRG适用于有限系统,通过逐步增加block大小找到基态。DMRG与矩阵乘积态(MPS)紧密关联,是其一维形式,提供了一种有效计算强关联系统的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重整化:

起源于量子场论,是量子场论、统计场论和自相似几何结构中解决计算过程中出现无穷大的一系列方法。例如,在 QED 中,用费曼图做微扰展开,带圈的图容易导致发散,因为在路径积分中,需考虑圈中的虚粒子有任意动量/能量的情况,例如下面右边的这个图对应的积分算出来是发散的。
在这里插入图片描述

这样讲可能有点抽象,我们换一种说法,在知乎上有这么一种解释,我觉得可能会比较好理解。假设我们想要用计算机模拟一杯水,看看相关的性质并得出一些和真实的水一致的结论。最简单的想法就是我们精确模拟每个水分子。在电脑里面输入每个水分子的大小(一个参数)、形状(假设可以用2000个参数进行描述)、不同距离的作用力(假设还是可以用2000个参数进行描述),假设一杯水我们又1026个水分子,再假设计算机的计算水平无限,那么我们至少需要102621032103个参数才能描述一杯水的基础状态,如果我们要对水进行一些模拟,比如要投入一个铁球,那么我们还要加入铁球的参数,无疑需要的参数是非常多的。事实上,我们没有这么无限计算量的计算机,那么参数的问题不得不考虑。要在能够得到精确结果的前提下,尽量少的使用参数量,就可以通过重整化参数来实现。重整化群严格来讲是一个半群,因为重整化的过程具有不可逆性。
Renormalization group(重整化群)其实就是不断重新定义参数的一组变换,是一种粗粒化的方法。
粗粒化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值