重整化:
起源于量子场论,是量子场论、统计场论和自相似几何结构中解决计算过程中出现无穷大的一系列方法。例如,在 QED 中,用费曼图做微扰展开,带圈的图容易导致发散,因为在路径积分中,需考虑圈中的虚粒子有任意动量/能量的情况,例如下面右边的这个图对应的积分算出来是发散的。
这样讲可能有点抽象,我们换一种说法,在知乎上有这么一种解释,我觉得可能会比较好理解。假设我们想要用计算机模拟一杯水,看看相关的性质并得出一些和真实的水一致的结论。最简单的想法就是我们精确模拟每个水分子。在电脑里面输入每个水分子的大小(一个参数)、形状(假设可以用2000个参数进行描述)、不同距离的作用力(假设还是可以用2000个参数进行描述),假设一杯水我们又1026个水分子,再假设计算机的计算水平无限,那么我们至少需要102621032103个参数才能描述一杯水的基础状态,如果我们要对水进行一些模拟,比如要投入一个铁球,那么我们还要加入铁球的参数,无疑需要的参数是非常多的。事实上,我们没有这么无限计算量的计算机,那么参数的问题不得不考虑。要在能够得到精确结果的前提下,尽量少的使用参数量,就可以通过重整化参数来实现。重整化群严格来讲是一个半群,因为重整化的过程具有不可逆性。
Renormalization group(重整化群)其实就是不断重新定义参数的一组变换,是一种粗粒化的方法。
粗粒化