机器学习在量子物理学中的应用(一)

本文探讨了机器学习在量子物理学中的应用,重点介绍了神经网络的训练方法,包括梯度下降和随机梯度下降。利用手写数字识别数据集,通过全连接和卷积神经网络进行实验,输出层采用softmax函数进行归一化。同时,详细阐述了正向传播、反向传播过程以及损失函数的概念,强调了交叉熵在评估模型性能中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习

在这里插入图片描述
根据所选择的权重的不同,即A不同,产生不同的神经网络;
当A是满足以下条件的对角矩阵时,该神经网络是卷积网络;

  1. 有m+n个权重
  2. 对角矩阵形如
    在这里插入图片描述

例如有六个输入且含三个权重为w1,w2,w3的卷积网络的A为
在这里插入图片描述
在这里插入图片描述

常用非线性激励函数

在这里插入图片描述

梯度下降法训练神经网络

在这里插入图片描述

梯度随机下降法网络训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值