主成分分析:利用特征值分解实现数据降维

120 篇文章 25 订阅 ¥59.90 ¥99.00
本文介绍了主成分分析(PCA)的基本原理和Python实现。PCA通过数据标准化、计算协方差矩阵、特征值分解及选择主成分来降维。文章提供了使用numpy进行PCA的代码示例,展示了如何将数据从高维降至二维,适用于数据预处理和特征提取,有助于理解PCA并提升计算效率。
摘要由CSDN通过智能技术生成

主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维方法,用于发现数据集中最重要的特征。在PCA中,我们利用特征值分解的方法将原始数据转换为新的坐标系,使得数据在新坐标系下具有最大的方差。本文将介绍PCA的原理,并提供Python源代码实现。

PCA的原理:

  1. 数据标准化:首先对原始数据进行标准化,使得每个特征的均值为0,方差为1。这是因为PCA是基于数据的协方差矩阵进行计算的,如果特征之间的尺度存在差异,会导致计算结果不准确。

  2. 计算协方差矩阵:通过计算标准化后的数据的协方差矩阵,得到特征之间的相关性。协方差矩阵的第i行第j列元素表示第i个特征与第j个特征的协方差。

  3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。特征值表示数据在特征向量方向上的方差,特征向量表示数据在新坐标系下的投影方向。

  4. 选择主成分:根据特征值的大小,选择前k个特征向量作为主成分,其中k是我们希望降维后的维度。通常我们选择特征值较大的前k个特征向量,因为它们对应的特征值较大,表示数据包含的信息量较多。

  5. 数据转换:将原始数据投影到选取的主成分上,得到降维后的数据。

下面

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值