主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维方法,用于发现数据集中最重要的特征。在PCA中,我们利用特征值分解的方法将原始数据转换为新的坐标系,使得数据在新坐标系下具有最大的方差。本文将介绍PCA的原理,并提供Python源代码实现。
PCA的原理:
-
数据标准化:首先对原始数据进行标准化,使得每个特征的均值为0,方差为1。这是因为PCA是基于数据的协方差矩阵进行计算的,如果特征之间的尺度存在差异,会导致计算结果不准确。
-
计算协方差矩阵:通过计算标准化后的数据的协方差矩阵,得到特征之间的相关性。协方差矩阵的第i行第j列元素表示第i个特征与第j个特征的协方差。
-
特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。特征值表示数据在特征向量方向上的方差,特征向量表示数据在新坐标系下的投影方向。
-
选择主成分:根据特征值的大小,选择前k个特征向量作为主成分,其中k是我们希望降维后的维度。通常我们选择特征值较大的前k个特征向量,因为它们对应的特征值较大,表示数据包含的信息量较多。
-
数据转换:将原始数据投影到选取的主成分上,得到降维后的数据。
下面