【机器学习系列】SVD奇异值分解(python代码)

说明

NumPy有一个称为linalg的线性代数工具箱。本文主要介绍如何使用该工具箱实现矩阵的SVD处理。

参考

《机器学习实战》P255

代码

#coding:utf-8

from numpy import *

def loadData():
    return [[1,1,1,0,0],
             [2,2,2,0,0],
             [3,3,3,0,0],
             [5,5,3,2,2],
             [0,0,0,3,3],
             [0,0,0,6,6]]

data=loadData()

u,sigma,vt=linalg.svd(data)

print sigma

sig3=mat([[sigma[0],0,0],
      [0,sigma[1],0],
      [0,0,sigma[2]]])

print u[:,:3]*sig3*vt[:3,:]


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值