leetcode 300. 最长递增子序列

该问题是一个经典的动态规划问题,给定一个整数数组,目标是找出其中最长的严格递增子序列的长度。例如,在输入数组[10,9,2,5,3,7,101,18]中,最长递增子序列是[2,3,7,101],所以长度为4。提供的Java程序使用动态规划方法来计算这个长度。
摘要由CSDN通过智能技术生成

题目描述:

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

 样例:

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -10^4 <= nums[i] <= 10^4

Java程序:

class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] dp=new int[nums.length];
        Arrays.fill(dp,1);
        for (int i = 0; i < nums.length; i++) {
            for (int j = 0; j < i; j++) {
                if(nums[i]>nums[j]){
                    dp[i]=Math.max(dp[i],dp[j]+1);
                }
            }
        }
        int res=0;
        for (int i = 0; i < dp.length; i++) {
            res=Math.max(res,dp[i]);
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Famiglistimott

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值