基于非下采样小波包分析的轴承故障诊断
代码运行环境为MATLAB r2021b,非下采样小波包变换执行信号的等带宽精细滤波,而不是离散小波变换中的较粗糙的倍频程滤,而且很好的缓解了小波包变换中的时间分辨率损失,这使得非下采样小波包在许多应用中比小波包或离散小波变换表现的更好。
?以150 和 200 Hz 的两个间歇正弦波为例,看一下非下采样小波包的时频谱图和离散小波变换的时频谱图,效果显而易见。
同时以某一轴承外圈故障故障振动信号为例,看一下其分解得到的子频带包络谱,可见第3个子带和第8个子带的包络谱故障特征频率较为明显,不妨重新看一下,故障特征频率非常清楚了
面包多代码下载
基于非下采样小波包分析的轴承故障诊断
引言 在工业生产中,机械设备的故障诊断和预测维护是非常重要的任务。其中,轴承故障是机械设备常见的故障之一,具有严重的影响和后果。因此,如何准确、及时地诊断轴承故障,对于保障设备的正常运行和提高生产效率具有重要意义。
非下采样小波包变换 在轴承故障诊断领域,非下采样小波包变换(Nonsubsampled Shearlet Transform,NSST)是一种常用的信号分析方法。相对于离散小波变换和小波包变换,NSST具有更好的性能和精度。
代码运行环境为MATLAB r2021b 在本文的研究中,我们使用了MATLAB r2021b作为代码运行环境。MATLAB是一套专门用于科学计算和工程计算的强大软件,提供了非常丰富的工具和函数库,方便我们进行信号处理和数据分析。
非下采样小波包变换的优势 非下采样小波包变换相较于离散小波变换具有以下几个优势:
-
等带宽精细滤波 非下采样小波包变换执行信号的等带宽精细滤波,而不是离散小波变换中的较粗糙的倍频程滤波。这使得NSST在频域上更好地保留了信号的细节信息。
-
时间分辨率损失缓解 非下采样小波包变换很好地缓解了小波包变换中的时间分辨率损失。在许多应用中,NSST比小波包或离散小波变换表现得更好,能够更准确地分析信号的时频特性。
实验结果分析 我们以150Hz和200Hz的两个间歇正弦波为例,对比了非下采样小波包的时频谱图和离散小波变换的时频谱图。实验结果显示,非下采样小波包的时频谱图在频域上更加清晰,能够更准确地反映信号的频率特性。
此外,我们还以某一轴承外圈故障振动信号为例,分解得到了子频带包络谱。观察结果显示,在第3个子带和第8个子带的包络谱中,故障特征频率较为明显。这说明非下采样小波包变换能够有效地提取轴承故障信号中的故障特征频率,为故障诊断提供了有力的支持。
结论 本研究基于非下采样小波包分析的轴承故障诊断方法,通过MATLAB r2021b编写代码进行实验验证。实验结果表明,非下采样小波包变换在轴承故障诊断中具有更好的性能和精度。它可以准确地提取信号的时频特性,发现故障特征频率,为机械设备的故障诊断和预测维护提供了有效的手段。
结语 本文围绕基于非下采样小波包分析的轴承故障诊断展开了阐述。通过对非下采样小波包变换的原理和优势进行介绍,以及实验结果的分析,验证了非下采样小波包变换在轴承故障诊断中的有效性和可行性。希望本文对于读者在轴承故障诊断领域的研究和实践能够有所帮助。
相关代码,程序地址:http://imgcs.cn/lanzoun/678266853658.html