MacOS M1/M2/M3芯片如何安装Python3.6

前言

Mac电脑M芯片安装Python3.6报错。

一般情况下,Mac系统可以使用homebrew来管理安装软件。
brew search搜索发现,最低只能直接安装python@3.7版本。

于是从Python官网下载安装包进行安装,确实也没有报错,安装完成后执行总是killed,不能正常使用。

下载源码编译也不行。

直接使用pyenv版本管理工具进行安装也是提示编译错误。

解决方法

问题的根本原因是:系统安装的openssl版本过高导致。
按照一下步骤可以解决问题:

#Install Rosetta
/usr/sbin/softwareupdate --install-rosetta --agree-to-license

# Install x86_64 brew
arch -x86_64 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

# Set up x86_64 homebrew and pyenv and temporarily set aliases
alias brew86="arch -x86_64 /usr/local/bin/brew"
alias pyenv86="arch -x86_64 pyenv"

# Install required packages and flags for building this particular python version through emulation
brew86 install pyenv gcc libffi gettext
# 注意一定要安装正确的openssl版本,后续指定的PYTHON_BUILD_HOMEBREW_OPENSSL_FORMULA情况下,pyenv安装也会自动安装
brew86 install openssl@1.1
# -------------- change to openssl@1.1 here and others as well ----------+#                                                             ↓
export CPPFLAGS="-I$(brew86 --prefix libffi)/include -I$(brew86 --prefix openssl@1.1)/include -I$(brew86 --prefix readline)/lib"
export CFLAGS="-I$(brew86 --prefix openssl@1.1)/include -I$(brew86 --prefix bzip2)/include -I$(brew86 --prefix readline)/include -I$(xcrun --show-sdk-path)/usr/include -Wno-implicit-function-declaration" 
export LDFLAGS="-L$(brew86 --prefix openssl@1.1)/lib -L$(brew86 --prefix readline)/lib -L$(brew86 --prefix zlib)/lib -L$(brew86 --prefix bzip2)/lib -L$(brew86 --prefix gettext)/lib -L$(brew86 --prefix libffi)/lib"

# Providing an incorrect openssl version forces a proper openssl version to be downloaded and linked during the build
export PYTHON_BUILD_HOMEBREW_OPENSSL_FORMULA=openssl@1.1

# Install Python 3.6.4
pyenv86 install 3.6.4

安装完后可以在目录下设置版本pyenv local 3.6.4,效果如下图
在这里插入图片描述

参考资料

  1. install-python-3-6-on-mac-m1
<think>好的,我现在要回答用户关于M3芯片是否支持CUDA安装的问题。首先,我需要确认M3芯片的架构。M3是苹果自研的芯片,属于ARM架构,而CUDA是NVIDIA开发的,只能在NVIDIA的GPU上运行。所以,理论上,M3芯片的GPU不支持CUDA。 接下来,用户可能想知道有没有替代方案。比如,苹果的Metal框架可以用来进行GPU计算,或者使用TensorFlow Metal插件来加速机器学习任务。另外,如果用户需要CUDA环境,可能需要考虑使用外部GPU(eGPU),但M3 Mac可能不支持NVIDIA的eGPU,因为苹果已经转向自家芯片,驱动支持可能有限。 还需要检查苹果官方文档和NVIDIA的说明,确认CUDA是否支持ARM架构的苹果芯片。根据现有信息,NVIDIA的CUDA主要支持x86架构和自家的GPU,所以M3芯片无法直接安装CUDA。用户可能需要使用Rosetta 2运行x86的软件,但CUDA依赖底层硬件,所以Rosetta也无法解决这个问题。 最后,总结回答,明确说明M3不支持CUDA,并提供可行的替代方案,如Metal、TensorFlow Metal,或者考虑其他硬件平台。同时,引用相关资料来支持结论,比如NVIDIA的官方说明和苹果的开发者文档。</think>关于M3芯片是否支持CUDA的问题,以下是详细分析: ### 1. **M3芯片与CUDA的兼容性** M3芯片是苹果基于ARM架构自主研发的处理器,其GPU采用**定制化设计**,未采用NVIDIA的GPU架构。而CUDA是**NVIDIA专属的并行计算平台**,仅支持NVIDIA GPU硬件[^1]。因此,**M3芯片的GPU无法直接安装或运行CUDA**。 ### 2. **替代方案** 若需在M3设备上实现GPU加速计算,可考虑以下方案: - **苹果Metal框架**:苹果为开发者提供的GPU计算接口,支持机器学习、图形渲染等任务,性能优化针对苹果芯片设计。 - **TensorFlow Metal插件**:通过该插件,可在M1/M2/M3芯片上加速TensorFlow/PyTorch模型训练,例如: ```python import tensorflow as tf tf.config.experimental.set_visible_devices([], &#39;GPU&#39;) # 启用Metal加速 ``` - **跨平台工具链**:如Taichi、JAX等支持多后端(CPU/Metal/Vulkan)的框架。 ### 3. **特殊场景的变通方法** - **NVIDIA GPU远程调用**:通过云服务(如AWS/GCP)连接含NVIDIA GPU的实例,本地M3设备仅作为终端。 - **CUDA模拟层**:实验性项目如`ZLUDA`尝试在非NVIDIA GPU上模拟CUDA,但目前对M3芯片**无官方支持**,稳定性存疑。 ### 4. **硬件限制与底层原因** NVIDIA CUDA依赖以下硬件特性: - 专用Tensor Core(仅NVIDIA GPU具备) - 特定内存架构(如HBM2/HBM3) - 驱动层与苹果系统深度整合的冲突 苹果自研芯片的GPU采用**统一内存架构**(CPU/GPU共享内存),与NVIDIA独立显存设计存在根本差异[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值