【原创】揭秘萝卜快跑:自动驾驶技术解析与程序员的新机遇

作者 | 码六甲
来源 | 首发于公众号java-tech

在科技的浪潮中,百度Apollo的创新之作——萝卜快跑,以其全面升级的自动驾驶出行服务,引领我们驶向未来交通的新纪元。
今天,就让我们深入探索这一科技奇迹背后的驱动力: 究竟是什么尖端技术在支撑着萝卜快跑的智能轮转?
这些技术又能否点燃程序员职业生涯的新火花,成为他们把握未来的新风口?


来源:百度Apollo官网

1、萝卜快跑的技术

萝卜快跑,作为百度Apollo(百度自动驾驶和汽车智能化平台)家族中的新星,不仅仅是一个无人自动驾驶平台,它更是智能出行服务的未来篇章。
它与滴滴出行共享着出行服务的基因,但在技术上,萝卜快跑更进一步,融入了尖端的自动驾驶技术,展现出与众不同的科技魅力。
在这里,我们不仅看到了出行服务的传统技术精髓,更见证了无人驾驶技术所带来的革命性飞跃。

1.1、传统的出行技术

  • 大数据:利用海量的出行数据进行算法优化,提高效率。这里面既有乘客数据,也有司机的数据。
  • 算法:出行相关的算法就非常多了,比如路径规划算法调度算法匹配算法推荐算法定价算法风险评估算法等等。
  • 移动应用开发:iOS和Android/鸿蒙平台上的移动应用开发技术,提供给用户和司机使用的应用程序APP。
  • 前端技术:包括HTML5、CSS3、JavaScript以及相关的前端框架和库,如React、Vue.js等。这些并不是给用户的网页,多数是后台支撑的网页。
  • 后端技术:使用服务器端语言和框架,如Java、Python、C++、Go等,以及微服务架构。
  • 数据库技术:关系型数据库如MySQL、PostgreSQL,以及NoSQL数据库如MongoDB等。
  • 云服务和虚拟化:使用云平台如阿里云、AWS、Azure等,以及虚拟化技术来支持大规模服务部署。
  • 其他技术。

1.2、自动驾驶技术

  • 自动驾驶技术:有L4级自动驾驶技术和L5级自动驾驶技术之分。
  • 智能算法:这里算法比传统出行算法复杂很多,比如深度学习算法
  • 智能决策:基于深度学习算法对感知信息进行分析处理,以做出合理的驾驶决策技术。
  • 机器学习和人工智能:应用机器学习算法进行预测分析、用户行为分析等,使用深度学习框架如TensorFlow、PyTorch等。
  • 自动驾驶大模型Apollo ADFM:百度Apollo发布的全球首个支持L4级别无人驾驶应用的自动驾驶大模型,提高了自动驾驶车辆的感知能力,并通过自标注提升了数据处理的效率。
  • 高精度感知:通过激光雷达、摄像头、毫米波雷达等传感器获取周围环境的感知信息。
  • 安全冗余和MRC安全策略:基于大量真实场景运行数据和复杂场景分析,百度Apollo第六代自动驾驶系统解决方案设计了多重安全冗余和安全策略,以实现最安全、最人性化的安全表现。
  • 自动化运维:萝卜快跑实现了包括车辆的自动唤醒、自动出车、自动换电和自动清洁等功能,提高了运营效率和安全性。
  • 智能化其他技术。

是否觉得上述技术令人目不暇接?
别急,让我们来梳理一下。
其实,萝卜快跑的核心可以概括为“人工智能与通用技术的完美结合”。
这不仅是技术的融合,更是未来出行方式的革新。

2、自动驾驶招聘什么人才

我们去百度招聘官网,一探自动驾驶需要什么人才。
招聘官网 https://talent.baidu.com/external/baidu/index.html#/

我们搜“自动驾驶”技术岗位,如下:

我们找几类岗位看看:

  • 算法工程师
数据仿真组_模型优化算法工程师(J71370)

工作职责:

-负责设计和研发自动驾驶模型MLOps能力,提升自动驾驶车端/云端模型的迭代效率 
-负责设计和研发自动驾驶模型托管能力,提升自动驾驶模型生产的自动化程度 
-负责设计和研发AutoML算法,提升自动驾驶模型生产的自动化程度 
-负责设计和研发模型蒸馏和量化算法,保障自动驾驶模型自动生产的效果

职责要求:

-3-5年深度学习相关工作或研究经验,有数据闭环相关经验优先 
-计算机、电子、自动化、应用数学等相关专业硕士或以上学历,博士优先 
-熟悉PyTorch、PaddlePaddle、MxNet、TensorFlow等训练框架 
-具备扎实的Python/C++开发能力,有良好的编程习惯 
-加分项:具有MLOps研发落地经验优先 
-加分项:具有大模型相关研发经验优先 
-加分项:熟悉AtuoML、NAS、超参数优化、大模型预训练、模型压缩和量化训练等技术,在至少一个方向有比较深入的落地经验 
-加分项:在CVPR/EECV/NIPS/ICML等机器学习顶会上发表过文章者优先
  • 高级Web前端研发工程师
自动驾驶基础架构部_自动驾驶出行业务高级Web前端研发工程师(萝卜快跑组)(J57679)

工作职责:

-负责自动驾驶业务中台相关工具和内部平台Web前端的功能设计、开发和优化 
-负责前端性能优化、扩展性技术研发 
-迭代及专项业务项目的推进落地 
-前端前沿技术研究和新技术调研

职责要求:

-本科及以上学历,计算机相关专业,3年以上web前端开发经验 
-精通各种Web前端技术(HTML/CSS/Javascript等),对于低代码、设计系统、移动端开发、客户端开发等中的某个或多个领域有一定的实践经验 
-熟练掌握React/Angular/Vue中的至少一种框架,有相关项目开发经验 
-熟悉前端工程化与模块化开发,并有相关实践经验(webpack/rollup/parcel等) 
-良好的项目管理能力,能独当一面负责一个中大型项目的研发流程管理 
-熟悉Linux系统,对算法、数据库、数据结构以及后台开发(Nodejs/Go/Java等)有一定了解优先 
-有网约车、用增营销工作经验优先,有较强的产品理解,能从技术角度推动产品优化同学优先
  • 系统研发工程师
自动驾驶基础架构部_自动驾驶系统研发工程师(J63000)

工作职责:

-负责车端大模型工程化,对传感器数据高并发鲁棒处理 
-车端算力极致的压榨利用(CPU/GPU)提升推理性能 
-负责控车模块的准确安全及系统集成,保障无人车高性能稳定运行

职责要求:

-本科及以上学历,计算机、软件或通信相关专业,具有较好的编程能力,熟练掌握Linux平台下C/C++、Python等编程语言 
-有系统C++性能及GPU优化的研发工作经验优先; 
-有良好的沟通能力和团队合作能力,善于沟通,工作自主驱动,具备良好的问题定位分析能力
  • Android高级研发工程师
自动驾驶基础架构部_Android高级研发工程师(J47240)

工作职责:

-负责智能座舱软件、车载信息娱乐系统的软件功能设计及开发工作 
-负责自动驾驶商业化运营类的座舱软件功能设计及开发工作 
-学习和研究新技术以满足智能座舱产品的需求,根据开发过程中的体验对产品提出改进建议

职责要求:

-全日制本科或以上学历,计算机、软件工程、电子、通信、自动化等相关专业 
-5年以上软件研发工作经验,3年以上智能座舱软件研发经验 
-有座舱域控制器项目经验,有高通6155、8155和8295芯片平台开发经验者优先 
-对Android、Linux系统有深入理解,熟练掌握Java语言,熟悉C++或Python优先 
-具备良好的系统分析和设计能力,掌握常规设计模式

细究萝卜快跑背后的岗位需求,我们不难发现,自动驾驶领域的技术人才需求远不止于算法专家。
实际上,构建这一前沿出行服务平台需要多样化的技术专长。从直观的前端Web设计到移动应用的安卓和iOS客户端开发,再到后端的坚实支撑,无论是C++、Java、Go还是Python,这些常用技术依然是支撑平台运营的中坚力量。
除此之外,算法研发和产品设计等岗位也在自动驾驶的浪潮中发挥着不可或缺的作用,共同绘制着智能出行的未来蓝图。

3、自动驾驶技术会不是下一个风口?

自动驾驶技术无疑正在成为资本市场的新宠。
但对于广大程序员而言,这是否意味着新的职业风口正在形成?
或许,这不仅是一个技术问题,更是一个关乎未来机遇的探索。
在这场技术革命中,你准备好迎接挑战了吗?
欢迎在评论区分享你的观点。

转载请联系作者,否则侵权处理。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值