【算法】前缀和(一维前缀和与二维前缀和)

本文深入解析前缀和算法,涵盖一维和二维前缀和的定义、计算方法及应用,通过实例展示如何有效降低查询时间复杂度,特别聚焦于LeetCode 560题的高效解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前缀和是一种重要的预处理,能大大降低查询的时间复杂度。

【一维前缀和】

给定一个数组A[1,2,……n],则它的前缀和数组为PrefixSum[1..n]。定义为:PrefixSum[i] = A[0]+A[1]+...+A[i-1];

【例子】

A[5,6,7,8] --> PrefixSum[5,11,18,26]

PrefixSum[0] =A[0] ;

PrefixSum[1] =A[0] + A[1] ;

PrefixSum[2] =A[0] + A[1] + A[2] ;

PrefixSum[3] =A[0] + A[1] + A[2] + A[3] ;

【用法】

  1. 可以通过前缀和求出任意区间的求和值,比如我们想求出[5,10]区间内的求和值,即s[10]-s[4]=[5,10]

【思路】

对于一个给定的数组nums,使用额外开辟一个前缀和数组preSum进行预处理:

int n = nums.length;
// 前缀和数组
int[] preSum = new int[n + 1];
preSum[0] = 0;
for (int i = 0; i < n; i++)
    preSum[i + 1] = preSum[i] + nums[i];

通过前缀和,想要求nums[i...j]的和,只需要一步操作:preSum[j+1] - preSum[i]即可。

【题目 Leetcode 560】

给你一个整数数组 nums 和一个整数 k ,请你统计并返回该数组中和为 k 的连续子数组的个数。

示例 1:

输入:nums = [1,1,1], k = 2
输出:2

示例 2:

输入:nums = [1,2,3], k = 3
输出:2

思路1:前缀和

int subarraySum(int[] nums, int k) {
    int n = nums.length;
    // 构造前缀和
    int[] sum = new int[n + 1];
    sum[0] = 0; 
    for (int i = 0; i < n; i++)
        sum[i + 1] = sum[i] + nums[i];
    
    int ans = 0;
    // 穷举所有子数组
    for (int i = 1; i <= n; i++)
        for (int j = 0; j < i; j++)
            // sum of nums[j..i-1]
            if (sum[i] - sum[j] == k)
                ans++;

    return ans;
}

时间复杂度:O(N*N)

空间复杂度:O(N)

对于这个前缀和方法来说,时间复杂度过于大了。

优化:

主要是时间复杂度消耗在两个for循环中,在计算有几个 j 能够使得 sum[i] 和 sum[j] 的差为 k。毎找到一个这样的 j,就把结果加一。

那么,如果直接记录下有几个sum[j]和sum[i] - k相等,直接更新结果,就避免了内层的for循环。

这里就用到了hash表。

代码如下:

public int subarraySum(int[] nums, int k) {
        int length = nums.length;
        Map<Integer,Integer> presum = new HashMap<>();

        presum.put(0,1);

        int ans = 0;
        int sum_i = 0;
        for(int i = 0; i < length; i++){
            sum_i += nums[i];
            int sum_j = sum_i - k;
            if(presum.containsKey(sum_j)){
                ans += presum.get(sum_j);
            }
            presum.put(sum_i, presum.getOrDefault(sum_i, 0) + 1);
        }
        return ans;
    }

对于hash表的用法,在另一章中讲解。

那么在这里时间复杂度就成了O(N)了。

【二维前缀和】

从上图中可以看出,前缀和数组里每一个位置都表示原数组当前index左上方的数字的和。
比如像图里面画的:prefixSum[3, 3] = src[0~2, 0~2]的和;
二维前缀和数组要怎么计算出来呢?
可以分为四种情况

  1. i==0 && j==0,只有一个直接赋值即可:prefixSum[0, 0] = src[0, 0]。
  2. i==0,最左边的一排,图中黄色部分,prefixSum[0, j] = prefixSum[0, j-1] + src[0, j];
  3. j==0,最上面一排,途中红色部分,prefixSum[i, o] = prefixSum[i-1, 0] + src[i, 0];
  4. i!=0 || j!=0,图中绿色部分,prefixSum[i][j] = prefixSum[i - 1][j] + prefixSum[i][j - 1] + src[i][j] - prefixSum[i - 1][j - 1];


我们要得到prefixSum[2,2],我们知道应该是图一中箭头指向的区域。也就是9个方框加起来的和,也就是54。
看图二,我们可以利用prefixSum[1, 2]和prefixSum[2, 1],但是他俩的区域是重合的,如图二所示,重合的区域又恰好是prefixSum[1, 1]负责的区域,相当于加了两份,需要减掉一份。
所以prefixSum[2,2] = prefixSum[1, 2] + prefixSum[2, 1] - prefixSum[1, 1] + src[2, 2];
也就是54 = 33 + 21 -12(这个是prefixSum[1, 1]) +12(这是src[2, 2])


        for (int i = 0; i < src.length; i++) {
            for (int j = 0; j < src[0].length; j++) {
                if (i == 0 && j == 0) {//第0个,最左上角
                    result[i][j] = src[i][j]
                } else if (i == 0) {//第一行,最顶部一行
                    result[i][j] = result[i][j - 1] + src[i][j]
                } else if (j == 0) {//第一列,最左边一列
                    result[i][j] = result[i - 1][j] + src[i][j]
                } else {//其他
                    result[i][j] = result[i - 1][j] + result[i][j - 1] + src[i][j] - result[i - 1][j - 1]
                }
            }
        }
        return result;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值