可视化工具,也叫BI工具(Business Intelligence商业智能工具),是我们进行数据指标可视化的关键工具,决定了数据指标应用的展现层是否好用。目前市面上BI工具层出不穷,国产的工具近今年也是奋起猛追,如何选到符合企业自身情况的BI工具呢,作者用四个步骤来手把手教你选到适合的工具。
下载PDF文档,关注更多大数据资讯及内容请关注gzh“大数据食铁兽”,回复“可视化”。
一、确定使用场景及需求
通过回答以下四个问题,明确自己的需求。
谁来用,解决什么问题
-
谁来配置:
决定数据可视化工具易用性的要求,使用难易程度。
数据分析人员/配置人员:有一定的技术基础,可进行复杂的数据运算及配置
业务人员:无数据基础,对易用性要求高,需要配合底层的数据开发团队
-
都谁看:
决定了报表美观性要求,以及报表的呈现方式要求。
内部:实用性要求高,美观性要求一般。
领导层/外部:对美观性要求高,需要大屏展示。
-
多少人:
决定用户规模,采购的收费方式以及成本。一般需要区分多少人需要制作发布报表,多少人需要进行报表的查看,是否有多个部门/团队需要使用。
解决什么问题
决定了选型上对开源性以及是否支持OEM。
报表可视化:灵活取用数据,形成可视化报表分享给各业务角色进行运营、分析、决策。--开源/商业化
产品化工具:形成自己数据产品及能力,融合到自己的数据产品线对外发布。--开源
报表呈现的形式
决定了报表美观性、模板丰富程度、自适应等要求
-
想要的呈现方式:报表、可视化图表、管理驾驶舱、简报
-
对报表美观度的要求:内部使用,过的去即可;外部门面,要美。
-
期望在哪里看:PC、手机、大屏
数据存在哪,与其他系统如何交互
报表的制作及发布属于OLAP场景中的重要部分,目前主流的做法是将报表工作放在数据中台的应用层,从中台的数据集市中出数,当然也存在一些公司是直接从关系型数据库中出数的。所以,明确数据在的位置决定了数据对接的数据源要求,以及数据同步的机制。主要分为:关系型数据库、大数据相关组件、文本文件、接口文件等。
二、盘点团队人员及能力
有了需求及场景,大概的方向已经明确了,接下来需要盘点团队自身的能力来决定什么样的工具较适合自身的发展情况。一般来说,一个可视化的报表工作主要包括以下角色及工作内容,不同担任的角色会对整体功能选型的侧重点不同:
角色 | 内容 | 由谁担任 | 选择侧重点 |
查看人员 | 最终用户,包括业务人员、领导层等 | 业务人员 | PC、移动端实用基础功能 |
领导层/外部展示 | 大屏效果 | ||
设计人员 | 产品原型设计、UI设计 | 产品原型设计、UI设计 | 灵活扩展、丰富的可扩展插件 |
业务人员 | 模板丰富、易用性高 | ||
配置人员 | 报表发布、配置 | 业务人员 | 模板丰富、易用性高、操作容易 |
报表配置人员/数据分析师 | 支持复杂计算功能、丰富的内置函数、sql编辑器等 | ||
开发人员 | 底层指标数据开发、系统集成 | 数据开发 | 有数据开发团队支撑,无需复杂计算功能 |
后端开发 | 可以考虑有扩展功能的工具 |
三、确定预算
根据自身的财务状况确定采购的预算,决定了BI工具的商业化情况及收费模式。
通常来讲成本由高到底为本地化部署>客户端按序列号>云版本按用户数>开源
四、BI工具选型
考察要点
对BI工具的选择,主要从基础功能、扩展能力、使用难易程度、费用四个大维度进行评价。详细考察要点及如何选取见下表:
类型 | 功能点 | 考察要点 | 选择说明 |
使用难易度 | 字段汉化 | 是否支持 | 优选有汉化的 |
使用难易度 | 性能 | 对大数据量托拉拽的响应速度,工具底层的数据存储 | 数据量较大的情况使用需要重点考察 |
使用难易度 | 部署难易程度 | 是否支持容器化、部署的组件、环境依赖情况 | 影响不大,一次性工作 |
使用难易度 | 硬件及环境要求 | 运行需要的服务器软硬件配置要求 | 影响不大 |
使用难易度 | 支持本地化部署 | 本地化部署 | 对数据安全要求较高的企业考虑,成本较高 |
使用难易度 | 国内外情况 | 国内、国外 | 外企选国外工具,国企选国内工具 |
使用难易度 | 可视化模板 | 提供的可视化模板丰富程度 | 如企业无UI,对美观度有一点要求,则可选择可视化模板多的,易用性更强 |
使用难易度 | 排版布局难度 | 托拉拽支持、布局参考线、自适应排版等 | 推荐布局容易的 |
使用难易度 | 团队协作 | 需要共同编辑,组建团队进行协作 | 看团队协作方式 |
使用难易度 | 报表自适应 | 针对不同尺寸的终端可实现自适应的排版布局 | 看是否需要发布在不同的终端 |
扩展能力 | 系统集成 | 与其他系统集成,进行单点登录设置,统一认证鉴权、组织机构角色权限同步等 | 如为单独独立的子系统可不考虑 |
扩展能力 | 二次开发 | 支持二次开发及扩展 | 有BI工具产品化及本土化需求的需考察 |
基础功能 | 数据库支持 | 支持关系型数据库如MySQL、Oracle等 大数据相关组件,如Hive、clickhouse、Hbase等 JDBC扩展 文件 接口 | 目前主流的工具基本都支持这几种,主要看扩展看扩展方面是否支持jdbc的扩展 |
基础功能 | 任务调度 | 是否集成定时任务调度工具,如kettle等 | 如果企业自身有任务调度工具,则该项功能可以弱化 |
基础功能 | 数据更新方式 | 增量更新、实时更新(直连数据库)、缓存 | 基本都支持 |
基础功能 | 操作难易程度 | 上手容易度,对技术依赖程度 包括:sql编译器支持、表关联、 计算 | 根据使用报表的人员角色选用。数据分析/专业报表配置人员使用,可选用功能丰富,操作复杂的产品,纯业务人员使用,选取操作性更强的产品,弱化复杂的计算功能,sql编辑功能 |
基础功能 | 官方支持 | 提供中文帮助文档,社区活跃 | 优先选择社区活跃,有中文社区的,遇到问题可以快速排查 |
基础功能 | 图表类型 | 提供图表类型是否丰富,是否支持自定义扩展 | 基本图表类型都有,对图表美观度有要求的,建议选择支持自定义扩展的 |
基础功能 | 指标加工 | 支持多列组合计算,对时点值支持情况,是否支持跨源 | 如有专门数据团队支撑底层的指标数据,则对数据源的加工部分可以弱化,如数据需要在BI层进行大量的转化及计算,需要重点考虑指标加工及公示种类数量 |
基础功能 | 公式种类数量 | 常用函数数量,字符串、日期、聚合等 | 如有专门数据团队支撑底层的指标数据,则对数据源的加工部分可以弱化,如数据需要在BI层进行大量的转化及计算,需要重点考虑指标加工及公示种类数量 |
基础功能 | 图表导出能力 | 导出为Excel、pdf、图片 | 看具体场景需求 |
基础功能 | 消息推送 | 定时邮件发送、集成微信、企业微信定时推送 | 看具体场景需求 |
基础功能 | 权限控制 | 资源权限、数据权限、列权限 | 重点看数据权限部分,决定报表不同角色看数据的行权限 |
基础功能 | 图表分享能力 | 支持生成链接发送给其他用户进行查看,验证方式有:普通、口令、登录等 | 通过分享链接的方式可进行查看及系统集成,有这两个需求的可重点看 |
基础功能 | 登录方式 | 网页/客户端 | 部分工具配置工作需要下载客户端,部分全部都可以通过网页进行配置及查看,便利性更高 |
费用 | 收费模式 | 本地部署、按用户/序列号 | 主要考虑数据安全、成本及用户数 |
费用 | 是否开源 | 开源、半开源、商业化 | 根据团队人员配置情况及成本情况进行考虑 |
主流可视化工具
工具名称 | 特点 | 收费情况 | 国内外 |
Tableau | BI工具的鼻祖,国外的,需要客户端,适合外企 | 商业版 | 国外 |
PowerBI | 微软产品,适合外企 | 商业版 | 国外 |
帆软 | 分产品系列:FineBI及FineReport。产品较重,适合有专门的报表配置人员的企业 | 商业版 | 国内 |
SmartBI | 金融行业认可度高,功能可拆解出售,中国化报表、数据回填、可视化报表等,产品线比较多 | 商业版 | 国内 |
DataEase | 来自飞致云,半开源,涉及扩展及集成需要购买企业版插件 | 半开源 | 国内 |
Davinci | 国内团队,已停止更新 | 开源 | 国内 |
Superset | 国外团队,使用习惯上不太符合国人的习惯 | 开源 | 国外 |
Datart | 原来Davinci团队出品,国内开源做的比较好的BI工具,基础功能都满足,开源版本最高版本是rc版,后续不再更新开源版本,逐渐走向商业化 | 开源、商业版 | 国内 |
RayData Report | 腾讯云出品,在数据简报、易用性、可视化模板方面做的很好 | 商业版 | 国内 |
总结
有钱,对后续服务有要求的(商业化工具):外企选Tableau或PowerBI,国内推荐帆软、SmartBI、RayData Report,相对较成熟,根据自己需求及实际情况进行选择即可。功能丰富强大,选帆软、SmartBI;易用性美观性要求高选RayData Report,DataEase。
对二次开发要求高、有自己团队期望做产品的(开源工具):选Datart