《大模型合规白皮书2023》:为了解大模型立法最新动态和立法趋势提供有价值的参考

本白皮书在我国人工智能法律监管框架下进一步梳理了大模型相关方的合规义务及要点,并展望未来大模型法律监管体系的发展趋势与特征,对政府、企业、社会共建大模型治理体系提出切实建议,从而为社会各界了解大模型立法最新动态和立法趋势提供有价值的参考,并为相关单位开展大模型业务提供法律解读及合规指引,保障大模型相关业务的合规经营以及行业的健康规范发展。

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

来源:金杜律师事务所、上海人工智能研究院

免责声明:以上报告均系本平台通过公开、合法渠道获得,报告版权归原撰写/发布机构所有,如涉侵权,请联系删除 ;资料为推荐阅读,仅供参考学习,如对内容存疑,请与原撰写/发布机构联系。

关注gzh“大数据食铁兽”获取《大模型合规白皮书2023完整版

YOLOv8目标跟踪YOLO(You Only Look Once)系列中的最新版本,用于实时目标检测跟踪YOLO系列以其高速度准确性在计算机视觉领域广受欢迎。YOLOv8在继承前代优点的基础上,进一步提升了性能应用范围。 以下是YOLOv8目标跟踪的一些关键特点: 1. **实时性能**:YOLOv8能够在高帧率下进行目标检测跟踪,适用于需要实时响应的应用场景,如自动驾驶视频监控。 2. **高精度**:通过改进的网络结构训练方法,YOLOv8在检测精度上有了显著提升,能够更准确地识别分类目标。 3. **多目标跟踪**:YOLOv8不仅能够检测单个目标,还能同时跟踪多个目标。这对于复杂场景中的目标跟踪尤为重要。 4. **轻量化设计**:尽管性能提升,YOLOv8的模型大小计算量并没有显著增加,便于在资源受限的设备上部署。 5. **丰富的预训练模型**:YOLOv8提供了多种预训练模型,支持多种应用场景,用户可以根据需求选择合适的模型进行微调。 YOLOv8目标跟踪的工作原理主要包括以下几个步骤: 1. **输入图像预处理**:将输入图像调整为模型所需的输入格式。 2. **特征提取**:通过卷积神经网络提取图像的特征。 3. **目标检测**:在提取的特征图上应用检测头,预测目标的位置类别。 4. **目标跟踪**:利用检测结果进行多目标跟踪,维护目标的状态轨迹。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据食铁兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值