有关秩的几个重要式子

矩阵的秩:设A是m×n矩阵,若存在k阶子式不为零,而任意k+1阶子式全为零(如果有的话),则r(A)=k,且A是n×n矩阵,则r(An×n)=n⇔∣A∣≠0⇔A可逆r(A_{n×n}) = n \Leftrightarrow|A|≠0\Leftrightarrow A可逆r(An×n​)=n⇔∣A∣​=0⇔A可逆向量组的秩:向量组α1,α2,...,αs\alpha_1,\alpha_2,...,\alpha_sα1​,α2​,...,αs​的极大线性无关组αi1,αi2,...,αir\alph
摘要由CSDN通过智能技术生成

矩阵的秩:
设A是m×n矩阵,若存在k阶子式不为零,而任意k+1阶子式全为零(如果有的话),则r(A)=k,且A是n×n矩阵,则
r ( A n × n ) = n ⇔ ∣ A ∣ ≠ 0 ⇔ A 可 逆 r(A_{n×n}) = n \Leftrightarrow|A|≠0\Leftrightarrow A可逆 r(An×n)=nA=0A
向量组的秩:
向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs的极大线性无关组 α i 1 , α i 2 , . . . , α i r \alpha_{i_1},\alpha_{i_2},...,\alpha_{i_r} αi1,αi2,...,αir中所含向量的个数r称为向量组的秩,记作 r a n k ( α 1 , α 2 , . . . α s ) = r 或 r ( α 1 , α 2 , . . . α s ) = r rank(\alpha_1,\alpha_2,...\alpha_s)=r或r(\alpha_1,\alpha_2,...\alpha_s)=r rank(α1,α2,...αs)=rr(α1,α2,...αs)=r

常见的一些公式及证明
设A是m×n矩阵,B是满足有关矩阵运算要求的矩阵,则
0 ≤ r ( A ) ≤ m i n { m , n } 0≤r(A)≤min\{m,n\} 0r(A)min{ m,n}(由矩阵的秩的定义可知)
r ( k A ) = r ( A ) ( k ≠ 0 ) r(kA)=r(A)(k≠0) r(kA)=r(A)(k=0)(由矩阵的定义可以)
r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r(AB)≤min\{r(A),r(B)\} r(AB)min{ r(A),r(B)}
  证明:
A m × n B n × s = { a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n } × { β 1 β 2 ⋮ β n } = { a 11 β 1 + a 12 β 2 + . . . + a 1 n β n ⋮ a m 1 β 1 + a m 2 β 2 + . . . + a m n β n } A_{m×n}B_{n×s}= \left\{ \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21}& a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{matrix} \right\} × \left\{\begin{matrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{matrix}\right\}=\left\{\begin{matrix} a_{11}\beta_1+a_{12}\beta_2+...+a_{1n}\beta_n \\ \vdots \\a_{m1}\beta_1+a_{m2}\beta_2+...+a_{mn}\beta_n \end{matrix}\right\} Am×nBn×s=a11a21am1a12a

  • 23
    点赞
  • 63
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值