需求函数:
性质:关于所有价格和收入零次齐次性(所有商品价格与收入乘以t倍),最优化需求数量保持不变。
- CES需求函数
CES需求函数的函数形式为:
U ( x , y ) = x δ δ + y δ δ U(x,y)=\frac{x^\delta}{\delta}+\frac{y^\delta}{\delta} U(x,y)=δxδ+δyδ
构造朗格朗日表达式:
f = x δ δ + y δ δ + λ ( I − p x x − p y y ) f = \frac{x^\delta}{\delta}+\frac{y^\delta}{\delta}+\lambda(I-p_xx-p_yy) f=δxδ+δyδ+λ(I−pxx−pyy)
求偏导数得到一阶条件:
{ ∂ f ∂ x = x δ − 1 − λ p x = 0 ∂ f ∂ x = x δ − 1 − λ p x = 0 ∂ f ∂ λ = I − p x x − p y y = 0 \left\{ \begin{array}{rcl} \frac{\partial f}{\partial x} = x^{\delta-1}-\lambda p_x=0\\ \frac{\partial f}{\partial x} = x^{\delta-1}-\lambda p_x=0\\ \frac{\partial f}{\partial \lambda}=I-p_xx-p_yy=0 \end{array} \right. ⎩⎨⎧∂x∂f=xδ−1−λpx=0∂x∂f=