线性代数——求给定向量组的极大线性无关组

极大线性无关组是向量组中的一部分线性无关向量,能线性表示组内所有向量。在解决此类问题时,应将向量构成矩阵并进行初等行变换,转换为阶梯型矩阵,从而找到极大线性无关组。例如,向量组α1, α2, α3, α4, α5的极大线性无关组可通过此方法得出,避免初等列变换导致的对应关系混乱。" 133191990,20014492,YOLOv实时口罩检测技术详解,"['机器学习', '深度学习', '目标检测', '计算机视觉', '口罩检测']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

极大线性无关组:
在向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs中,若存在部分组 α i 1 , α i 2 , . . . , α i r \alpha_{i_1},\alpha_{i_2},...,\alpha_{i_r} αi1,αi2,...,αir满足:
α i 1 , α i 2 , . . . , α i r \alpha_{i_1},\alpha_{i_2},...,\alpha_{i_r} αi1,αi2,...,αir线性无关;
②向量组中任一向量 α i ( i = 1 , 2 , . . . s ) \alpha_i(i=1,2,...s) αi(i=1,2,...s)均可由 α i 1 , α i 2 , . . . , α i r \alpha_{i_1},\alpha_{i_2},...,\alpha_{i_r} αi1,αi2,...,αir线性表出。
则称向量组 α i 1 , α i 2 , . . . , α i r \alpha_{i_1},\alpha_{i_2},...,\alpha_{i_r} αi1,αi2,...,αir是原向量组的极大线性无关组。

注意
1.向量组的极大线性无关组一般不唯一
2.只由一个零向量组成的向量组不存在极大线性无关组
3.一个线性无关向量组的极大线性无关组就是该向量本身

【张宇考研数学基础30讲 2021版】p345 eg.2.3.8 设向量组
α 1 = [ 1 , − 1 , 2 , 4 ] T , α 2 = [ 0 , 3 , 1 , 2 ] T , α 3 = [ 3 , 0 , 7 , 14 ] T , α 4 = [ 1 , − 2 , 2 , 0 ] T , α 5 = [ 2 , 1 , 5 , 10 ] T \alpha_1=[1,-1,2,4]^T,\alpha_2=[0,3,1,2]^T,\alpha_3=[3,0,7,14]^T,\alpha_4=[1,-2,2,0]^T,\alpha_5=[2,1,5,10]^T α1=[1,1,2,4]T,α2=[0,3,1,2]T,α3=[3,0,7,14]

极大无关组和向量组等价是线性代数中的两个重要概念,下面分别解释这两个术语以及它们之间的关系。 ### 极大无关组 对于一个给定向量空间V内的有限向量集合S = {v_1, v_2,..., v_n},如果存在子集T ⊆ S满足以下条件,则称这个子集为S的一个极大无关组: - T中任何非零数量的向量都是线性无关的; - 如果从S中再加入任何一个不在T里的向量,那么得到的新集合将是线性相关的;即新集合不再保持线性独立性质。 换句话说,极大无关组是一个最大化的线性无关向量子集。它既包含了尽可能多的原集合中的信息又保证了这些元素之间没有多余的依赖关系。 ### 向量组等价 当说两组向量A={a_1,a_2,…,a_m} 和 B={b_1,b_2,…,b_k} 是等价的时候,意味着这两组可以互相表示对方的所有成员。具体来说就是指每一组都可以由另一组经过线性组合而获得。形式上讲, - A中的每一个向量都能被B中的某些向量以某种系数相乘后再加起来所构成, - 反之亦然,B中的每个向量也可以用同样的方式通过A中的向量构造出来。 这种情况下我们可以说A和B互为基底或者说是彼此张成的空间相同。 ### 它们的关系 在一个向量空间里,任意一组向量都有可能找到不止一种极大无关组,但是所有的极大无关组都拥有相同的基数(即其中含有的向量数目),这被称为该向量组的秩(rank)。而且,不同极大无关组之间总是相互等价的——因为它们都能够生成整个向量空间并且自身内部没有任何冗余的信息。 此外,如果两个向量组等价,那么其中一个必然是另一个的最大线性无关部分之一,也就是说两者有着相同的秩。反之则不一定成立,除非是在讨论同一个向量空间的不同基的情况下。 综上所述,极大无关组与向量组等价的概念紧密相连,前者描述了一种特殊的、最简化的向量选取方案,后者定义了一个更为广泛意义上的相似性标准,二者共同构成了理解向量空间结构的重要理论框架。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值