开始使用 NVIDIA Jetson Orin 上的深度学习加速器

开始使用 NVIDIA Jetson Orin 上的深度学习加速器

在这里插入图片描述

如果您是一名活跃的 Jetson 开发人员,您就会知道 NVIDIA Jetson 的主要优势之一是将 CPU 和 GPU 组合到一个模块中,从而在一个小型低功耗封装中为您提供可扩展的 NVIDIA 软件堆栈,可以部署在边缘环境中。

Jetson 还具有各种其他处理器,包括硬件加速编码器和解码器、图像信号处理器和深度学习加速器 (DLA)。

DLA 可用于 Jetson AGX XavierXavier NXJetson AGX OrinJetson Orin NX 模块。 最近基于 NVIDIA DRIVE Xavier 和 Orin 的平台也具有 DLA 内核。

如果您使用 GPU 执行深度学习,请继续阅读以了解有关 DLA、它为何有用以及如何使用它的更多信息。

深度学习加速器概述

DLA ( Deep Learning Accelerator ) 是一种专用集成电路,能够有效地执行现代神经网络架构中常见的固定操作,例如卷积和池化。尽管 DLA 没有 GPU 那么多的支持层,但它仍然支持许多流行的神经网络架构中使用的各种层。

在许多情况下,层支持可能会满足您模型的要求。例如,NVIDIA TAO 工具包包括 DLA 支持的各种预训练模型,范围从对象检测到动作识别。

虽然需要注意的是,DLA 吞吐量通常低于 GPU,但它非常节能,并且允许您卸载深度学习工作负载,从而将 GPU 腾出来用于其他任务。或者,根据您的应用程序,您可以同时在 GPU 和 DLA 上运行相同的模型以实现更高的净吞吐量。

许多 NVIDIA Jetson 开发人员已经在使用 DLA 成功地优化他们的应用程序。 Postmates 利用 DLA 和 GPU 在 Jetson AGX Xavier 上优化了他们的送货机器人应用程序。菜鸟 ET 实验室使用 DLA 优化他们的物流车辆。如果您希望全面优化您的应用程序,那么 DLA 是 Jetson 曲目中需要考虑的重要部分。

在这里插入图片描述

要使用 DLA,您首先需要使用 PyTorch 或 TensorFlow 等深度学习框架来训练您的模型。 接下来,您需要使用 NVIDIA TensorRT 导入和优化您的模型。 TensorRT 负责生成 DLA 引擎,也可以用作执行它们的运行时。 最后,您应该分析您的模式并在可能的情况下进行优化,以最大限度地提高 DLA 兼容性。

开始使用深度学习加速器

准备好深入了解了吗? Jetson_dla_tutorial GitHub 项目演示了一个基本的 DLA 工作流程,可帮助您优化 Jetson 应用程序。

通过本教程,您可以了解如何在 PyTorch 中定义模型、使用 TensorRT 导入模型、使用 NVIDIA Nsight System profiler 分析性能、修改模型以获得更好的 DLA 兼容性以及校准 INT8 执行。 请注意,CIFAR10 数据集用作简单示例,以方便重现这些步骤。

探索 Jetson_dla_tutorial 以开始使用。

更多资源

### Jetson Orin Nano 和 Orin NX 的电源模式及性能影响 Jetson Orin 系列模块提供了多种电源模式,这些模式允许开发人员根据具体应用场景灵活调整功耗与性能之间的平衡。以下是关于 Orin Nano 和 Orin NX 不同电源模式的详细介绍以及它们对性能的影响。 #### 1. **Orin NX 的电源模式** Orin NX 提供了几种预设的电源模式,其中包括 MAXN 模式、25W 模式和 40W 模式: - **MAXN 模式**: 此模式下,Orin NX 启用了尽可能多的核心和最高的时钟频率,从而提供最强的计算能力[^1]。然而,在这种模式下运行需要确保设备具有足够的散热解决方案,因为高核心利用率和高频操作会产生显著热量。 - **40W 模式**: 这一模式下的性能接近于 MAXN 模式,但在热设计功率 (TDP) 上有所降低,适合大多数高性能应用场合。相比 MAXN 模式,其温度控制更为友好。 - **25W 模式**: 在此模式下,Orin NX 将减少活动核心的数量并降低时钟频率以节省电能。虽然整体性能会下降,但它非常适合低功耗场景的应用程序。 #### 2. **Orin Nano 的电源模式** 尽管具体的数值可能有所不同,但 Orin Nano 类似支持类似的电源管理模式,通常包括较低瓦数范围内的选项(如 7W 或 10W),这使得该系列更适合嵌入式小型化项目或电池供电型设备[^2]。 #### 3. **性能对比分析** 当比较相同工作负载条件下两种型号的表现时可以发现: - 高端模式(例如 MAXN 或者 40W)能够使 Orin NX 达到更高的吞吐量水平; - 而对于更注重能耗效率而非绝对速度的任务来说,则可以选择更低 TDP 设置比如 Orin Nano 的某些特定设置来满足需求。 #### 4. **创建自定义电源模式的方法** 为了进一步优化硬件资源分配或者针对特殊用途定制专属方案,用户还可以尝试构建自己的个性化配置文件。主要步骤涉及修改现有脚本参数或是利用 NVIDIA SDK Manager 工具来进行图形界面编辑: ```bash sudo nvpmodel -m <mode_number> ``` 上述命令用于切换不同的预先定义好的模型;如果想要新增加一种全新的设定,则需参照官方文档说明编写相应的 JSON 文件,并将其加载进系统当中去执行相应更改[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值