Stable Diffusion v3.0 api使用教程

Stable Diffusion v3.0 api使用教程

在这里插入图片描述

今天Stable Diffusion v3.0的api终于可以使用, 效果真的出奇的好.

我这里测试了下给予Python环境的调用, 效果也是非常的好.

第一步, 注册API Key

如果想使用Stable Diffusion v3.0的API, 就要先注册并生成一个秘钥, 网址如下:
https://platform.stability.ai/account/keys

在下面的界面中点击"Create API Key"按钮, 就会生成红色框中的API Key, 然后点击蓝色框中复制按钮, 就可以保存下来.
在这里插入图片描述

第二步, 运行代码

import requests

response = requests.post(
    f"https://api.stability.ai/v2beta/stable-image/generate/sd3",
    headers={
        "authorization": f"Bearer Your API Key",
        "accept": "image/*"
    },
    files={"none": ''},
    data={
        "prompt": "An blue ship with golden wings",
        "output_format": "jpeg",
    },
)

if response.status_code == 200:
    with open("./blue_ship_with_golden_wings.jpeg", 'wb') as file:
        file.write(response.content)
else:
    raise Exception(str(response.json()))


from PIL import Image

input_image = Image.open("./blue_ship_with_golden_wings.jpeg").convert("RGB")
display(input_image)

将上面的"Your API Key"替换为你刚才生成的, 然后自定义prompt字段就可以生成你的图像

我这里是在Jupyter环境下运行的, 所以直接可以看到如下效果.
在这里插入图片描述

### Stable Diffusion 3.0 版本介绍 Stable Diffusion 3.0 是由 Stability AI 发布的一个重要版本更新,该模型在图像生成方面表现出显著的进步。新版本不仅提高了图像的质量和细节处理能力,还增强了对不同风格的支持[^1]。 官方强调此版本具有更高的稳定性和效率,在保持高质量输出的同时降低了计算资源的需求。对于开发者而言,这意味着可以在更广泛的硬件环境中部署应用,从而扩大了潜在的应用场景范围[^2]。 ### 安装指南 为了帮助用户顺利安装并使用 Stable Diffusion 3.0 ,以下是详细的安装步骤: #### 准备工作 访问 Hugging Face 平台上的项目主页获取最新的安装包链接: - 进入 SD3 的页面:[HuggingFace](https://huggingface.co/stabilityai/stable-diffusion-3-medium/tree/main) 下载完成后解压缩文件夹,内部包含了必要的组件和支持工具。 #### 执行安装过程 打开命令提示符窗口或终端服务,导航至已解压的目录位置执行以下操作: ```bash cd path_to_extracted_folder ``` 接着运行启动脚本来完成环境搭建以及依赖项加载: ```bash ./start_dependencies.sh # Linux/macOS 用户适用 .\start_dependencies.bat # Windows 用户适用 ``` 上述指令会自动检测当前系统的配置情况,并按需调整设置以确保最佳性能表现[^3]。 ### 使用教程 当一切准备就绪之后,可以通过图形界面轻松上手体验这款强大的AI绘图软件。具体来说,用户能够通过简单的参数调节来控制创作流程中的各个方面,比如分辨率大小、色彩倾向等个性化选项。 针对高级功能如 img2img 转换模式,则建议参照专门文档深入了解其工作机制及应用场景实例[^4]: ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler model_id = "stabilityai/stable-diffusion-3-medium" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "A fantasy landscape with a castle on top of the mountain." image = pipe(prompt=prompt).images[0] output_path = "./outputs/fantasy_landscape.png" image.save(output_path) ``` 这段 Python 代码展示了如何利用预训练好的 Stable Diffusion 模型快速生成一张基于给定描述的文字转图片作品。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扫地的小何尚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值