- 博客(86)
- 收藏
- 关注
原创 网关相关内容
网关过滤器有两种**GatewayFilter:**路由过滤器,作用于任意指定的路由,默认不生效,要配置到路由后生效**GlobalFilter:**全局过滤器,作用范围是所有路由,声明后自动生效@Component@Override// TODO: 模拟登录校验逻辑// 1. 获取请求// 过滤器业务逻辑// 使用chain进行放行,传入一个exchange对象,其实就是调用过滤器中的下一个过滤器@Override// 保证优先级高于过滤器中的最后一个转发过滤器。
2025-07-27 14:11:45
694
原创 微服务项目总结
单体架构(monolithic structure):整个项目中所有功能模块都在一个工程中开发;项目部署时需要对所有模块一起编译、打包;项目的架构设计、开发模式都非常简单。所有的功能集中在一个项目中开发,打包一个包部署。
2025-07-18 20:12:46
997
原创 java八股总结
编译器会在生成非静态内部类的构造方法时,将外部类实例作为参数传入,并在内部类的实例化过程中建立外部类和内部类实例之间的联系,从而实现直接访问外部方法的功能。抽象类可以有构造器,这些构造器在子类实例化时会被调用,以便进行必须的初始化工作,这个过程不是直接实例化抽象类,而是创建了子类的实例,间接使用了抽象类的构造器。 抽象方法是接口的核心部分,所有实现接口的类都必须实现这些方法,抽象方法默认是public和abstract,这些修饰符可以省略。default void sleep(){ // 默认方法。
2025-06-19 12:14:59
484
原创 客户端开发八股
Java的垃圾回收机制是JVM的机制,是一个运行在JVM后台的守护进程,由GC(Garbage Collection)实现。主要负责识别和回收不被使用的对象Java的回收机制是一个低优先级的进程,它可以根据内存的使用情况动态的调整其优先级,这是为了尽量避免频繁的进行垃圾回收,造成对CPU资源的浪费。
2025-06-18 23:13:53
1030
原创 MVSNet的一点点总结和思考
输入 (3,N,H,W),输出(32,N,H/4,W/4)【N是指N张图】。进行下采样是考虑到显存不够使,现在的工作一般不进行下采样的了本文主要提出CNN来得到更好的特征,深入思考一下是否有更好的方法来进行特征提取?用transformer?有人做过了,所以说有想法不行,还要手快才行。
2024-05-05 23:29:55
317
原创 基于深度学习的MVS学习笔记(05.04-05.07)
针对MVS专门拍摄处理的高精度室内物体数据集,利用可调节照明的ABB机械臂进行多视点拍摄由124个不同场景组成每个物体共拍摄49个不同的视角每个视角共有7种不同的亮度每张图像分辨率为1600x1200准确率召回率/完整性。
2024-05-05 22:01:40
1708
原创 Dual-MVSNet/DMVSNet论文精读
本文是Constraining Depth Map Geometry for Multi-View Stereo:A Dual-Depth Approach with Saddle-shaped Depth Cells的阅读记录。
2023-12-13 19:56:37
988
原创 Active Stereo Without Pattern Projector论文精读
主动立体相机和被动立体相机的主要区别在于它们获取立体视觉信息的方式。
2023-12-02 21:23:37
1125
原创 微调Fine tune
网络架构一个神经网络一般可以分为两块微调:使用之前已经训练好的特征抽取模块来直接使用到现有模型上,而对于线性分类器由于标号可能发生改变而不能直接使用训练是一个目标数据集上的正常训练任务,但使用更强的正则化重用分类器权重固定一些层神经网络通常学习有层次的特征表示微调通过使用在大数据上得到的预训练好的模型来初始化模型权重来完成提升精度预训练模型质量很重要微调通常速度更快,精度更好。
2023-11-30 20:18:45
575
原创 数据增广【以图像增广为例】
数据增广/增强: 对一个已有数据集中的数据进行变换,使其有更多的多样性。数据增广通过通过变形数据来获得多样性从而使得模型的泛化性能更好增强数据一般在线随机生成,主要用在训练过程中。从结果向前推可能会出现的结果,然后对图片进行处理。
2023-11-30 20:05:15
670
原创 多GPU训练的实现
使用多个GPU可以将模型的参数和训练数据分配到不同的GPU上并行处理,从而显著提高训练速度。每个GPU都可以处理一部分数据,同时进行反向传播和参数更新,使得整个训练过程更加高效。: 多GPU训练使得可以处理更大的模型和数据集,因为每个GPU都可以专注于处理部分模型参数和数据。这对于深度学习中复杂模型和大规模数据集的训练非常有益。: 利用多个GPU可以更充分地利用计算资源。在单个GPU上,可能存在计算资源的浪费,而多GPU训练可以更有效地利用这些资源。: 多GPU训练还有助于提高实验迭代速度。
2023-11-20 17:19:32
436
原创 【论文精读3】CasMVSNet
Cascade Cost Volume for High-Resolution Multi-View Stereoand Stereo Matching论文精读
2023-11-18 17:05:11
799
原创 Homography详解&&在MVSNet中的应用
已知一个平面上的两点P和Q,用两台照相机分别对其进行拍摄,那么P、Q会在相机C1上形成投影点p1,q1, 在相机C2上形成投影点p2, q2。再投影回世界坐标下,P 的位置应该不变)在3D坐标下的关系如上图,如果将坐标点投影到相机坐标系下的坐标,就可以得到2D单应性变换,只需要×相机参数K,如下图所示。想知道实际的点P投影到照相机的点的距离D,可以考虑在相机C1前假象n个平面,各个平面到相机的距离分别是d1-dn。已知相机C1距离已知平面的距离d, 相机C1到相机C2的旋转和平移矩阵,已知平面的法向量。
2023-11-16 16:34:53
507
原创 【论文精读2】R-MVSNet
这篇R-MVSNet是Yao Yao等原班人马针对MVSNet在内存消耗上的一个改进,所以基本思想没变,主要是利用不同视角图像特征变换至同一假设深度下,通过差分来判断某特征点属于当前深度的可能性,主要是在差分后代价体正则化步骤用了RNN序列化来做,是用时间换内存空间思想的一种应用。
2023-11-15 16:58:45
745
原创 CL-MVSNet论文精读
本文是对CL-MVSNet: Unsupervised Multi-View Stereo with Dual-Level Contrastive Learning Kaiqiang Xiong, Rui Peng, Zhe Zhang, Tianxing Feng, Jianbo Jiao, Feng Gao, Ronggang Wang的阅读记录原文链接。
2023-11-11 21:12:30
488
原创 CL_MVSNet复现可能会出现的问题汇总
torch.distributed.launch被弃用,考虑使用torchrun模块进行替换。将训练脚本中的torch.distributed.launch替换为torchrun。例如,如果原始命令如下如果还是报错如下:删掉–use-env解决方案:在dataloader时参数shuffle默认False即可。
2023-10-30 21:53:32
771
4
原创 【论文精读1】MVSNet架构各组织详解
提取N个输入图像的深层特征用作深度匹配与传统三维重建方法类似,第一步是提取图像特征(SIFT等特征子),不同点在于本文使用8层的卷积网络从图像当中提取更深层的图像特征表示,网络结构如下图所示:输入:N张3通道的图像,宽高为W,H输出:N组32通道图,每通道尺度为H/4,W/4虽然特征提取后图像帧缩小,但每个剩余像素的原始相邻信息已经被编码到32通道像素描述符中,防止了密集匹配丢失有用的上下文信息。【就是尺寸变小但是通道数增加,不同的通道可以保存更多有用的信息】将提取的特征图和输入图建立一个3D成本体积(之
2023-10-30 01:20:59
942
原创 Anaconda/minAnaconda下配置虚拟环境并安装pytorch相关
安装PyTorch,需要安装pytorch, torchvision,torchaudio三个包。直接看警告的地方提供的最新版本的conda,可以使用以下命令直接更新,但我没解决。Anaconda/minAnaconda下配置虚拟环境并安装pytorch相关。输入 conda list,查看是否存在pytorch 或者torch。输入 torch.cuda.is_available()激活对应的虚拟环境(安装Pytorch的虚拟环境)如果显示为True,就说明Pytorch安装成功了。
2023-10-25 16:58:07
275
原创 深度学习-房价预测案例
【.fillna(0)对选择的数值型特征进行了填充操作,将缺失值(NaN值)填充为0。fillna()是一个DataFrame对象的方法,用于填充缺失值】【torch.clamp()函数会将输出结果中小于下界的值替换为下界,将大于上界的值替换为上界,因此它可以用来对输出结果进行范围限制】【使用iloc属性对train_data这个DataFrame对象进行切片操作,选取了指定行和列的数据子集】.reshape(-1, 1)改变数组的形状,将其变为一个列向量(具有一列)。
2023-10-11 21:31:27
378
原创 Jupyter 报错:can‘t convert np.ndarray of type numpy.object_.
解决方案:使用.astype(“float64”)强制转化。
2023-09-24 00:43:21
770
原创 [winerror 5] 拒绝访问。: ‘..\\data‘解决方案
使用Jupyter Notebook学习深度学习时出现错误如下:[winerror 5] 拒绝访问。点编辑,选择User,勾选如下图所示权限,选择应用,然后确定。打开anaconda3找到python.exe。
2023-09-23 22:25:42
2722
3
原创 深度学习从入门到基础(第11天结束)
N维数组样例N维数组是机器学习和神经网络的主要数据结构0-d一个类别: 1.01-d一个特征向量(一维矩阵):[1.0, 2.7, 3.4]2-d一个样本-特征矩阵-(二维矩阵)3-dRGB图片 (宽x高x通道)- 三维数组4-d一个RGB图片批量(批量大小x宽x高x通道)5-d一个视频批量(批量大小x时间x宽x高x通道)访问元素。
2023-09-22 22:30:22
555
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人