一些经典的神经网络(第22天)ending

1. 经典神经网络(LeNet)

LeNet是早期成功的神经网络;
先使用卷积层来学习图片空间信息
然后使用全连接层来转到到类别空间
在这里插入图片描述

【通过在卷积层后加入激活函数,可以引入非线性、增加模型的表达能力、增强稀疏性和解决梯度消失等问题,从而提高卷积神经网络的性能和效果】

LeNet由两部分组成:卷积编码器和全连接层密集块

import torch
from torch import nn
from d2l import torch as d2l

class Reshape(torch.nn.Module):
    def forward(self, x):
        return x.view(-1, 1, 28, 28) # 批量数不变,通道数=1,h=28, w=28

net = torch.nn.Sequential(Reshape(), 
                          nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(), # 在卷积后加激活函数,填充是因为原始处理数据是32*32
                          nn.AvgPool2d(kernel_size=2, stride=2), # 池化层
                          nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
                          nn.AvgPool2d(kernel_size=2, stride=2), 
                          nn.Flatten(), # 将4D结果拉成向量
                          # 相当于两个隐藏层的MLP
                          nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
                          nn.Linear(120, 84), nn.Sigmoid(), 
                          nn.Linear(84, 10))

检查模型

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
    X = layer(X) 
    """
    对神经网络 net 中的每一层进行迭代,并打印每一层的输出形状
    layer.__class__.__name__ 是获取当前层的类名,即层的类型
    """
    print(layer.__class__.__name__, 'output shape: \t', X.shape)

在这里插入图片描述
LeNet在Fashion-MNIST数据集上的表现

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

# 对evaluate_accuarcy函数进行轻微的修改
def evaluate_accuracy_gpu(net, data_iter, device=None):  
    """使用GPU计算模型在数据集上的精度。"""
    if isinstance(net, torch.nn.Module):
        net.eval()
        if not device:
            device = next(iter(net.parameters())).device
    metric = d2l.Accumulator(2)
    for X, y in data_iter:
        if isinstance(X, list):
            X = [x.to(device) for x in X]
        else:
            X = X.to(device)
        y = y.to(device)
        metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]  # 分类正确的个数 / 总个数


net.to(device) 是将神经网络 net 中的所有参数和缓冲区移动到指定的设备上进行计算的操作。

net 是一个神经网络模型。device 是指定的设备,可以是 torch.device 对象,如 torch.device(‘cuda’) 表示将模型移动到 GPU 上进行计算,或者是字符串,如 ‘cuda:0’ 表示将模型移动到指定编号的 GPU 上进行计算,也可以是 ‘cpu’ 表示将模型移动到 CPU 上进行计算。
通过调用 net.to(device),模型中的所有参数和缓冲区将被复制到指定的设备上,并且之后的计算将在该设备上进行。这样可以利用 GPU 的并行计算能力来加速模型训练和推断过程。
注意,仅仅调用 net.to(device) 并不会对输入数据进行迁移,需要手动将输入数据也移动到相同的设备上才能与模型进行计算。例如,可以使用 input = input.to(device) 将输入数据 input 移动到指定设备上。】

# 为了使用 GPU,我们还需要一点小改动
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)。"""
    def init_weights(m): # 初始化权重
        if type(m) == nn.Linear or type(m) == nn.Conv2d: 
            nn.init.xavier_uniform_(m.weight)

    net.apply(init_weights) # 对整个网络应用初始化
    print('training on', device)
    net.to(device) # 将神经网络 net 中的所有参数和缓冲区移动到指定的设备上进行计算的操作
    optimizer = torch.optim.SGD(net.parameters(), lr=lr) # 定义优化器
    loss = nn.CrossEntropyLoss() # 定义损失函数
    # 动画效果
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)

    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3) # metric被初始化为存储3个指标值的累加器
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            # 将输入输出数据也移动到相同的设备
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            # 动画效果
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

训练和评估LeNet-5模型

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

2. 深度卷积神经网络(AlexNet)

在这里插入图片描述
在这里插入图片描述
AlexNet架构 VS LeNet:
更大的核窗口和步长,因为图片更大了
更大的池化窗口,使用maxpooling
更多的输出通道
添加了3层卷积层
更多的输出

更多细节:

  • 激活函数从sigmod变成了Rel(减缓梯度消失)
  • 隐藏全连接层后加入了丢弃层dropout
  • 数据增强

总结:

  • AlexNet是更大更深的LeNet,处理的参数个数和计算复杂度大幅度提升
  • 新加入了丢弃法,ReLU激活函数,最大池化层和数据增强

代码实现:

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(), # 在MNIST输入通道是1,在ImageNet测试集上输入为3
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(), # 相比于LeNet将激活函数改为ReLU
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2), 
    nn.Flatten(), # 将4D->2D
    nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5), # 添加丢弃
    nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5),
    nn.Linear(4096, 10)) # 在Fashion-MNIST上做测试所以输出为10
# 构造一个单通道数据,来观察每一层输出的形状
X = torch.randn(1, 1, 224, 224)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'Output shape:\t', X.shape)

在这里插入图片描述

# Fashion-MNIST图像的分辨率低于ImageNet图像,所以将其增加到224x224
batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
# 训练AlexNet
lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

3. 使用块的网络(VGG)

3.1 VGG相关

在这里插入图片描述
VGG的引出:

  • AlexNet比LeNet更深更大,取得了更好的精度
  • 能不能更深更大?
    • 更多的全连接层(太贵)
    • 更多的卷积层
    • 将卷积层组合成块 -> VGG

VGG块:

  • 深VS宽

    • 在同样的计算开销下,堆多一点的3x3的卷积层(模型更深但是窗口更窄)相比于5x5的Conv效果更好
  • 3x3卷积(填充1【保持输入输出大小不变】)(n层【Conv层数】,m通道【Conv输入输出通道数】)

  • 2x2 Maxpooling(步幅2)

核心:用大量3x3conv+池化 -> 堆成块,大量的块 -> 网络

VGG架构:

  • 多个VGG块后连接全连接层
  • 不同次数的重复块得到不同的架构:VGG-16, VGG-19
  • 实际上就是把AlexNet的卷积层架构替换成了VGG块的串联

在这里插入图片描述

网络发展的进度:

  • LeNet(1995)

    • 2卷积 + 池化
    • 2 全连接层
  • AlexNet

    • 更大更深
    • ReLU,Dropout,数据增强
    • 快 / 精度不高
  • VGG

    • 更大更深更规整的AlexNet(重复的VGG块)
    • 慢 / 精度高 / 占用内存高 / 可通过调节块的数量改变

VGG总结:

  • VGG使用可重复使用的卷积块来构建深度卷积神经网络
  • 不同的卷积块个数和超参数可以得到不同复杂度的变种

3.2 代码实现

【layers = [] 是创建一个空的列表 layers。

layers 是一个列表对象,用于存储神经网络的层。
通过 layers = [],我们创建了一个空的列表,可以在后续的代码中向其中添加层。这种方式通常用于构建神经网络模型,可以方便地按顺序添加和管理不同层的参数和计算过程。

示例用法如下:

layers = []

# 添加层到列表中
layers.append(nn.Linear(10, 20))
layers.append(nn.ReLU())
layers.append(nn.Linear(20, 1))

# 使用列表构建神经网络模型
model = nn.Sequential(*layers)

在这个例子中,我们先创建一个空的列表 layers,然后按顺序向其中添加线性层、ReLU激活函数层和线性层。最后,我们使用 nn.Sequential 将列表中的层按顺序组合成一个神经网络模型 model。这种方式可以灵活地扩展和管理模型中的不同层。】
vgg块:通道加倍, 高宽减半

import torch
from torch import nn
from d2l import torch as d2l

def vgg_block(num_convs, in_channels, out_channels): # 超参数:卷积层数,输入输出通道数
    layers = [] # 创建一个空的列表 layers
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 经过一次池化, 高宽减半
    return nn.Sequential(*layers)

vgg-11 它有5个卷积块,前2块使用单卷积层,而后3块使用双卷积层

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512)) # 给出不同块的结构

def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    for (num_convs, out_channels) in conv_arch: # 构造出每一块
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels
    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), # 输入宽度=  通道数 * 最后输出矩阵的大小是7 * 7, 因为之前经过5次块的池化,224 - 112 - 56- 28 - 15 - 7 
        nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(),
        nn.Dropout(0.5), nn.Linear(4096, 10) )
    
net = vgg(conv_arch)
# 观察每个层输出的形状
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__, 'output shape:\t', X.shape)

在这里插入图片描述

由于后续模型太深,GPU跑不动哈,有点尴尬,但不多
还是给出测试过程:

# 由于VGG-11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

4. 网络中的网络(NiN)

4.1 NiN相关

在这里插入图片描述
问题引出:LeNet、AlexNet、VGG都存在问题—全连接层参数过多

  • 全连接层的参数过多:占用参数空间\占用内存大\占用带宽,容易过拟合
  • 于此对比,卷积层需要较少的参数:输入通道数x输出通道数x h x w

思路:

NiN块:

  • 一个卷积层后跟着两个’全连接层‘【用1x1卷积层代替全连接层】
    • 步幅1,无填充,输出形状和卷积层输出一样
    • 1x1卷积层起到全连接层的作用

在这里插入图片描述
1x1 Convolution:
在这里插入图片描述
NiN架构:

  • 无全连接层
  • 交替使用NiN块和步幅为2的最大池化层(高宽减半)
    • 逐步减小高宽和增大通道数
  • 最后使用全局平均池化层【全局平均化在每个通道上】得到输出
    • 其输入通道数是类别数
    • 最后使用softmax返回概率
      在这里插入图片描述

总结:

  • NiN块使用卷积层后加两个1x1卷积层【充当全连接层】
    • 对每个像素增加了非线性
  • NiN使用全局平均池化层来替代VGG和AlexNet中的全连接层【最后输出类别的那层】
    • 不容易过拟合,同时卷积层有更少的参数个数

4.2 NiN实现

NiN块:

import torch
from torch import nn
from d2l import torch as d2l

def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=strides,padding=padding),
        nn.ReLU(), nn.Conv2d(out_channels, out_channels, kernel_size=1), # 1x1卷积层相当于Linear,不改变通道数,输入输出通道数相同
        nn.ReLU(), nn.Conv2d(out_channels, out_channels, kernel_size=1),
        nn.ReLU()
    )

NiN模型 ->基于AlexNet架构

net = nn.Sequential(
        nin_block(1, 96, kernel_size=11, strides=4, padding=0), # 使用的是灰度图,所以输入通道数是1(使用Fashion-MNSIT数据集测试),后面参数继承自AlexNet
        nn.MaxPool2d(3, stride=2),
        nin_block(96, 256, kernel_size=5, strides=1, padding=2),
        nn.MaxPool2d(3, stride=2),
        nin_block(256, 384, kernel_size=3, strides=1, padding=1),
        nn.MaxPool2d(3, stride=2), 
        nn.Dropout(0.5),
        nin_block(384, 10, kernel_size=3, strides=1, padding=1), # 把通道数降到10,因为输出类别是10,如果使用别的数据集要修改输出通道数
        nn.AdaptiveAvgPool2d((1, 1)), # 做全局平均池化层,把每个通道的平均值拿出来-> 替代原来的输出类别的全连接层
        nn.Flatten() # 消除最后两个维度,将4D->2D, 方便后期Softmax
    )

查看每个块的输出形状:

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape:\t', X.shape)

在这里插入图片描述
训练模型:
训练时间过长,中断了哈,总体的准确率比VGG低,且处理图片数较少

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

5. 含并行连结的网络(GoogLeNet)

5.1 GoogLeNet相关

Inception块:

  • 从4个路径从不同层面抽取信息,然后在输出通道维合并
  • 和单纯使用单独3X3和5X5卷积层相比,Inception块有更少的参数个数和计算复杂度,关键是增加多样性(多种卷积)和降低参数
    在这里插入图片描述
    输入输出高宽不变,只有通道数发生变化

GoogLeNet:

  • 5段, 9个Inception块,每个块的参数有所不同
  • 最后的全局平均池化,不强求最后的通道数==类别数(NiN要求),更灵活
    在这里插入图片描述
    段1/2:
  • 更小的窗口,更多的通道
    h/w保留更多,后续可以支撑更深的网络

Inception有各种后续变种
在这里插入图片描述
Inception V3块,段3, 把原来5x5卷积替换成两个3X3卷积:
在这里插入图片描述
Inception V3块,段4, 把原本3X3卷积替换成两个1X7和7X1卷积
把原本5X5卷积替换成4个卷积
在这里插入图片描述
Inception V3块,段5,把原本3X3卷积替换成两个3X1和1X3卷积,把原本5X5卷积替换成三个卷积
在这里插入图片描述
总结:

  • Inception块使用4条有不同超参数的卷积层和池化层的路来抽取不同的信息

    • 它的一个主要优点是模型参数小,计算复杂度低
  • GoogLeNet使用了9个Inception块,是第一个达到上百层的网络,参数复杂

    • 后续有一系列改进
  • 在结构上类似VGG块的概念和NiN的最后全局池化和替换全连接

5.1 代码实现

Inception块:

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

class Inception(nn.Module):
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs): # c1-c4对应不同的通道数
        super(Inception, self).__init__(**kwargs)
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        return torch.cat((p1, p2, p3, p4), dim=1) # 在输出通道上cat,通道数为1。dim:沿着第一个维度进行拼接

GoogLetNet的实现:

# 参数不太好记
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2,
                                           padding=1))

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1), nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10)) # 最后的Inception块是1024个维度,输出10(类别)

查看每层的形状:

# 为了使Fashion-MNIST上的训练短小精悍,将输出的高和宽从224降低到96
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape:\t', X.shape)

在这里插入图片描述
后续网络的发展也基本遵循这样的思路:通道数增加,高和宽减小

训练模型

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

6. 残差网络(ResNet)

6.1 ResNet相关

残差网络,也被称为ResNet,是一种深度学习模型,其设计思想基于数据处理不等式。这种网络结构的关键创新在于引入了shortcut connections或者称为skip connections,即旁路的连接,将输入直接连到后面的层,使得后面的层可以直接学习残差。
在这里插入图片描述

在传统的卷积神经网络(CNN)中,随着网络深度的增加,训练过程可能会出现梯度消失或梯度爆炸的问题,导致网络性能难以提升。然而,残差网络通过shortcut connections成功地解决了这个问题。此外,残差网络还采用了bottleneck结构,这一结构有两个卷积层,一个是1x1的卷积层,另一个是3x3的卷积层,有效地减少了参数数量和计算量。
在这里插入图片描述

总的来说,残差网络通过shortcut connections和bottleneck结构的设计,能够更好地拟合高维函数,提高模型的性能和效率。同时,我们也需要注意到,由于其网络结构的复杂性,可能存在过拟合和过训练的问题。

残差块:

  • 串联一个层改变函数类,希望其可以扩大函数类,但是在很多情况下,多层函数的叠加效果可能会学偏,导致即使模型扩展很大,却没有小模型的效果好,为了使扩展后的新模型至少优于之前的模型可以考虑:
  • 残差块加入快速通道来得到(下图右边)
    f ( x ) = x + g ( x ) f(x)=x+g(x) f(x)=x+g(x)
    x:之前学习的模型
    g(x):新学会的模型参数
    在这里插入图片描述
    ResNet块细节:
    在这里插入图片描述
    将x加到不同的位置可以得到不同的残差块:
    在这里插入图片描述

ResNet块:

  • 高宽减半ResNet块(步幅为2)
  • 后接多个高宽不变的ResNet块:
    在这里插入图片描述
    ResNet架构:
  • 类似于VGG和GoogLeNet总体架构
  • 但是替换成立ResNet块
    在这里插入图片描述

总结:

  • 残差块使得更深的网络更容易训练(甚至可以训练1k层网络)
  • 残差网络对随后的深层神经网络的设计产生了深远影响,无论是卷积累网络还是全连接类网络

6.2 代码实现

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

class Residual(nn.Module):  
    """
    输入通道数,输出通道数,要不要用1x1卷积(不用哈),步长
    """
    def __init__(self, input_channels, num_channels, use_1x1conv=False,strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3,
                               padding=1, stride=strides) # 第一个卷积层可以指定stride kernel=3, padding=1高宽不变哈
        self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3,
                               padding=1) # 第二个卷积层没指定,默认等于1
        # 如果要使用1x1的卷积,将输入通道变化为输出通道数,stride指定可以匹配到后期的高宽-》主要就是把初始输入X的尺寸修改成Y的样子,方便相加
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels) # 批量归一化
        self.bn2 = nn.BatchNorm2d(num_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3: # 如果有第三层,直接改写输入
            X = self.conv3(X)
        Y += X
        return F.relu(Y)

输入和输出形状一致

blk = Residual(3, 3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape

在这里插入图片描述
增加输出通道数的同时,减半输出的高和宽

blk = Residual(3, 6, use_1x1conv=True, strides=2)
blk(X).shape

在这里插入图片描述
ResNet模型

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

"""
输入通道数,输出通道数,需要多少个块,是不是第一个块
"""
def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block: # 是resnet的第一个residual块,并且这个这个resnet块不是第一个resnet块,需要加个1x1卷积且高宽减半(结合ResNet结构图理解)
            blk.append(
                Residual(input_channels, num_channels, use_1x1conv=True,
                         strides=2))
        else: 
            blk.append(Residual(num_channels, num_channels))
    return blk

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

net = nn.Sequential(b1, b2, b3, b4, b5, nn.AdaptiveAvgPool2d((1, 1)),
                    nn.Flatten(), nn.Linear(512, 10))

查看ResNet中不同模块的输入形状如何变换

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape:\t', X.shape)

在这里插入图片描述
**训练模型:**当数据集很小的时候可能会过拟合

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值