多GPU训练的实现

进行多GPU训练有几个主要原因:

提高训练速度: 使用多个GPU可以将模型的参数和训练数据分配到不同的GPU上并行处理,从而显著提高训练速度。每个GPU都可以处理一部分数据,同时进行反向传播和参数更新,使得整个训练过程更加高效。

处理更大的模型和数据集: 多GPU训练使得可以处理更大的模型和数据集,因为每个GPU都可以专注于处理部分模型参数和数据。这对于深度学习中复杂模型和大规模数据集的训练非常有益。

资源利用率提高: 利用多个GPU可以更充分地利用计算资源。在单个GPU上,可能存在计算资源的浪费,而多GPU训练可以更有效地利用这些资源。

实验迭代速度提高: 多GPU训练还有助于提高实验迭代速度。在深度学习中,通过更快地尝试不同的模型架构、超参数和数据处理方法,可以更快地找到最优的模型配置。

需要注意的是,多GPU训练也面临一些挑战,如数据同步、通信开销等问题,需要采用适当的并行训练策略来解决这些问题。

1. 从0实现

多GPU训练的核心不同的卡得到不同的样本个数,分别进行训练然后将得到的各自梯度进行相加

%matplotlib inline
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


# 以LeNet网络为例子
scale = 0.01
W1 = torch.randn(size=(20, 1, 3, 3)) * scale
b1 = torch.zeros(20)
W2 = torch.randn(size=(50, 20, 5, 5)) * scale
b2 = torch.zeros(50)
W3 = torch.randn(size=(800, 128)) * scale
b3 = torch.zeros(128)
W4 = torch.randn(size=(128, 10)) * scale
b4 = torch.zeros(10)
params = [W1, b1, W2, b2, W3, b3, W4, b4]

def lenet(X, params):
    h1_conv = F.conv2d(input=X, weight=params[0], bias=params[1])
    h1_activation = F.relu(h1_conv)
    h1 = F.avg_pool2d(input=h1_activation, kernel_size=(2, 2), stride=(2, 2))
    h2_conv = F.conv2d(input=h1, weight=params[2], bias=params[3])
    h2_activation = F.relu(h2_conv)
    h2 = F.avg_pool2d(input=h2_activation, kernel_size=(2, 2), stride=(2, 2))
    h2 = h2.reshape(h2.shape[0], -1)
    h3_linear = torch.mm(h2, params[4]) + params[5]
    h3 = F.relu(h3_linear)
    y_hat = torch.mm(h3, params[6]) + params[7]
    return y_hat

loss = nn.CrossEntropyLoss(reduction='none')

向多个设备分发参数


# 把一个参数复制到指定device的gpu上
def get_params(params, device): # params是list,用来存放各个参数
    new_params = [p.clone().to(device) for p in params] 
    for p in new_params:
        p.requires_grad_()
    return new_params

new_params = get_params(params, d2l.try_gpu(0)) # 将params全部移动到cuda0上
print('b1 weight:', new_params[1])
print('b1 grad:', new_params[1].grad)

allreduce 函数将所有向量【将各个梯度的data相加然后复制回去】相加,并将结果广播给所有 GPU

def allreduce(data): # data是一个list[有几张卡就有几个list]
    for i in range(1, len(data)): # 把从1到后面cuda的数据全部复制到cuda0上,因为加法计算必须在同一张卡上操作
        data[0][:] += data[i].to(data[0].device) # for结束后, data[0中存放的就是所有梯度相加的结果
    for i in range(1, len(data)):# 将data[0]中的数据复制回各个gpu
        data[i] = data[0].to(data[i].device)

# test
data = [torch.ones((1, 2), device=d2l.try_gpu(i)) * (i + 1) for i in range(2)]
print('before allreduce:\n', data[0], '\n', data[1])
allreduce(data)
print('after allreduce:\n', data[0], '\n', data[1])
"""
output
before allreduce:
 tensor([[1., 1.]], device='cuda:0') 
 tensor([[2., 2.]], device='cuda:1')
after allreduce:
 tensor([[3., 3.]], device='cuda:0') 
 tensor([[3., 3.]], device='cuda:1')

"""

将一个小批量数据均匀地分布在多个 GPU 上

# test
data = torch.arange(20).reshape(4, 5)
devices = [torch.device('cuda:0'), torch.device('cuda:1')]
split = nn.parallel.scatter(data, devices) # .scatter直接均匀切割 
print('input :', data)
print('load into', devices)
print('output:', split)
"""
output
input : tensor([[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14],
        [15, 16, 17, 18, 19]])
load into [device(type='cuda', index=0), device(type='cuda', index=1)]
output: (tensor([[0, 1, 2, 3, 4],
        [5, 6, 7, 8, 9]], device='cuda:0'), 
        tensor([[10, 11, 12, 13, 14],
        [15, 16, 17, 18, 19]], device='cuda:1'))
"""
def split_batch(X, y, devices):
    """将`X`和`y`拆分到多个设备上"""
    assert X.shape[0] == y.shape[0]
    return (nn.parallel.scatter(X, devices), 
            nn.parallel.scatter(y, devices))

在一个小批量上实现多 GPU 训练

def train_batch(X, y, device_params, devices, lr):
    X_shards, y_shards = split_batch(X, y, devices) # 将小批量X和y均匀分布到各个gpu上
    # 从小批量和共享的设备参数里拿到每个gpu上的小批量X,y和参数,
    # 再把得到的(X_shard, device_W)放到LeNet里面,和y_shard求损失并求和
    # ls是list,每一gpu上的损失
    ls = [loss(lenet(X_shard, device_W),y_shard).sum() 
                    for X_shard, y_shard, device_W in zip(
                        X_shards, y_shards, device_params)]
    
    for l in ls:
        l.backward() # 对每个gpu算梯度

    with torch.no_grad():
        for i in range(len(device_params[0])):  # 这步结果是将每个设备参数的梯度存储的都是整体小批量的梯度
            allreduce([device_params[c][i].grad 
                       for c in range(len(devices))])
            
    # 对每个梯度做同步更新优化       
    for param in device_params:
        d2l.sgd(param, lr, X.shape[0])

定义训练函数

def train(num_gpus, batch_size, lr):
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    devices = [d2l.try_gpu(i) for i in range(num_gpus)]
    # 主要区别在于要将参数复制到每个gpu上
    device_params = [get_params(params, d) for d in devices] # 在训练之前将所有参数复制到每个gpu上
    num_epochs = 10
    animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
    timer = d2l.Timer()
    for epoch in range(num_epochs):
        timer.start()
        for X, y in train_iter:
            train_batch(X, y, device_params, devices, lr)
            torch.cuda.synchronize() # 同步一次
        timer.stop()
        animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(
            lambda x: lenet(x, device_params[0]), test_iter, devices[0]),))
    print(f'test acc: {animator.Y[0][-1]:.2f}, {timer.avg():.1f} sec/epoch '
          f'on {str(devices)}')
# 在单个GPU上运行

train(num_gpus=1, batch_size=256, lr=0.2)

# 增加为2个GPU
train(num_gpus=2, batch_size=256, lr=0.2)


理论上不会改变训练结果,也有可能分布式也不会变快,
主要:gpu增加了,batch_size没变,会导致gpu性能不能完全发挥,如果只是单纯增加batch_size,可能会导致acc降低,
所以一般可以将批量和lr一起提高一点

2. 简洁实现

import torch
from torch import nn
from d2l import torch as d2l
# 使用一个稍微大一点的模型
def resnet18(num_classes, in_channels=1):
    """稍加修改的 ResNet-18 模型。"""
    def resnet_block(in_channels, out_channels, num_residuals,
                     first_block=False):
        blk = []
        for i in range(num_residuals):
            if i == 0 and not first_block:
                blk.append(
                    d2l.Residual(in_channels, out_channels, use_1x1conv=True,
                                 strides=2))
            else:
                blk.append(d2l.Residual(out_channels, out_channels))
        return nn.Sequential(*blk)

    net = nn.Sequential(
        nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(64), nn.ReLU())
    net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
    net.add_module("resnet_block2", resnet_block(64, 128, 2))
    net.add_module("resnet_block3", resnet_block(128, 256, 2))
    net.add_module("resnet_block4", resnet_block(256, 512, 2))
    net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1, 1)))
    net.add_module("fc",
                   nn.Sequential(nn.Flatten(), nn.Linear(512, num_classes)))
    return net

net = resnet18(10)
devices = d2l.try_all_gpus()

训练-主要就是DataParallel的使用
DataParallel接口隐含的实现了get_params/ allreduce/split_batch等函数的功能


def train(net, num_gpus, batch_size, lr):
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    devices = [d2l.try_gpu(i) for i in range(num_gpus)]

    def init_weights(m):
        if type(m) in [nn.Linear, nn.Conv2d]:
            nn.init.normal_(m.weight, std=0.01)

    net.apply(init_weights)
    # .DataParallel接口隐含的实现了get_params/ allreduce/split_batch等函数的功能
    net = nn.DataParallel(net, device_ids=devices) # 把net复制到每个gpu上

    trainer = torch.optim.SGD(net.parameters(), lr)
    loss = nn.CrossEntropyLoss()
    timer, num_epochs = d2l.Timer(), 10
    animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])

    for epoch in range(num_epochs):
        net.train()
        timer.start()
        for X, y in train_iter:
            trainer.zero_grad()
            X, y = X.to(devices[0]), y.to(devices[0]) # 和前面实现一样,要先将数据都复制到同一块gpu上
            l = loss(net(X), y)
            l.backward()
            trainer.step()
        timer.stop()
        animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(net, test_iter),))
    print(f'test acc: {animator.Y[0][-1]:.2f}, {timer.avg():.1f} sec/epoch '
          f'on {str(devices)}')
# 在单个GPU上训练网络

train(net, num_gpus=1, batch_size=256, lr=0.1)
# 使用 2 个 GPU 进行训练
train(net, num_gpus=2, batch_size=512, lr=0.2)

可以通过调整批量和学习率来提升训练速度

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在使用torch进行多GPU训练时,我们可以通过torch.nn.DataParallel模块来实现。使用DataParallel模块可以自动将模型复制到多个GPU上,并将输入数据分割成多块,允许每个GPU进行并行计算。下面是使用torch.nn.DataParallel进行多GPU训练的步骤: 1. 导入必要的库和模块:首先,我们需要导入torch和torch.nn.DataParallel。 2. 定义模型:接下来,我们需要定义我们的模型,并将其放入DataParallel模块中。例如,我们可以使用nn.DataParallel(model)来创建一个多GPU版本的模型。 3. 数据准备与加载:然后,我们需要准备数据并加载到模型中。可以使用torch.utils.data提供的工具来处理数据和创建数据加载器。 4. 设定优化器:我们还需要设置一个优化器来更新模型的参数。可以使用torch.optim模块中提供的各种优化算法。 5. 训练模型:接下来,我们可以通过迭代数据加载器来训练模型。在每个迭代中,我们将输入数据加载到GPU上并进行前向传播、计算损失、反向传播和参数更新。 6. 模型评估:在训练完成后,我们可以使用训练好的模型进行评估。可以将评估数据加载到GPU上,并利用训练好的模型进行推理。 总结:使用torch进行多GPU训练可以通过torch.nn.DataParallel模块实现。通过该模块,我们可以方便地将模型复制到多个GPU上,并允许并行计算。这样可以提高训练速度和效率,加快模型的训练过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值