在人工智能的快速发展中,AI Workflow作为一种新兴的开发模式,正在逐渐成为大模型落地的关键路径。通过敏捷开发的方法,AI Workflow能够快速响应市场变化,实现高效迭代。本文将探讨AI Workflow的概念、开发挑战以及敏捷开发的最佳实践。
引言
随着人工智能技术的不断进步,大模型如ChatGPT等在各个领域的应用越来越广泛。然而,如何将这些大模型有效地落地,成为了许多企业和开发者面临的挑战。AI Workflow作为一种解决方案,通过敏捷开发的方式,为大模型的落地提供了新的思路。
AI Workflow的概念
AI Workflow,即人工智能工作流,是一种将大语言模型编排实现的智能体解决方案。它通过Prompt Pipeline等工程化手段,让大模型拥有特定领域的知识,从而实现更加精准和高效的任务执行。AI Workflow的核心在于将大模型的能力与特定应用场景相结合,通过自动化和智能化的方式,提高工作效率和质量。
AI Workflow的开发挑战
在AI Workflow的开发过程中,面临着诸多挑战,主要包括功能挑战和迭代挑战。
功能挑战
功能挑战主要体现在以下几个方面:
-
精确控制的记忆:AI Workflow需要能够精确控制模型的记忆,以确保在复杂的交互场景中,模型能够准确理解和执行任务。例如,在卖游戏点卡的机器人中,需要记住用户之前的需求和偏好,以便提供更加个性化的服务。
-
主动被动结合的沟通场景:AI Workflow需要能够灵活应对主动和被动的沟通场景。在主动场景中,模型需要能够主动发起对话,引导用户完成任务;在被动场景中,模型则需要根据用户的指令,提供相应的服务。
-
自有系统逻辑的融合介入:AI Workflow需要能够与企业自有的系统逻辑进行融合,实现无缝对接。这不仅需要技术层面的整合,更需要对业务流程和用户需求的深刻理解。
迭代挑战
迭代挑战主要体现在如何保证新变动不影响旧的逻辑,以及如何快速响应市场变化,实现快速迭代。
-
如何分析不符合预期的回答:在AI Workflow的开发过程中,需要对模型的输出进行持续的监控和分析,及时发现和解决不符合预期的回答。
-
上线后如何能保证新的变动不影响旧的逻辑:在迭代过程中,新的功能和逻辑可能会对旧的逻辑产生影响。因此,需要建立一套有效的测试和验证机制,确保新旧逻辑的兼容性和稳定性。
AI Workflow的敏捷开发
敏捷开发是一种以人为核心、迭代、循序渐进的软件开发方法。面对功能和迭代的双重挑战,敏捷开发显得尤为重要。敏捷开发的核心在于快速迭代和持续交付,它要求我们在开发过程中不断收集反馈,快速调整策略,以适应不断变化的需求和技术环境。
关于敏捷开发
敏捷开发的核心理念是快速响应变化,通过持续迭代和快速反馈,实现产品的持续改进和优化。为了实现快速迭代,我们需要建立调优中心和一键导入测试中心,确保开发过程中的每一个环节都能得到及时的反馈和调整。同时,流程中的节点验证和动作校验也是确保执行结果清晰可见的关键步骤。尽管大模型的出现可能会改变我们对编程语言的依赖,但工程思维和敏捷开发的方法论是不变的。链路追踪、自动化测试和版本控制等工程实践,将继续在我们的开发过程中发挥重要作用。
在AI Workflow的开发中,敏捷开发的具体实践包括以下几个方面:
- AI Workflow生命周期:AI Workflow是一个长期工程,需要持续的投入和优化。通过敏捷开发的方法,可以确保AI Workflow在不断的迭代中,逐步完善和优化。
-
快速迭代需要快速反馈:在敏捷开发中,快速迭代是关键。通过建立调优中心和测试中心,可以实现快速的反馈和调优,从而提高开发效率。
-
一键导入测试中心:为了提高测试的效率和准确性,可以通过一键导入的方式,将测试用例快速导入测试中心,实现自动化测试。
-
不能丢了西瓜捡芝麻:在敏捷开发中,需要关注整体的流程和效果,而不仅仅是局部的细节。通过流程中节点验证和流程运行完动作校验,可以确保整体流程的稳定性和可靠性。
-
执行结果一目了然:通过流程链路详情一键查看,可以直观地了解AI Workflow的执行过程和结果,及时发现和解决问题。
-
版本控制保证测试生产互不干扰:通过版本控制,可以确保测试和生产环境的隔离,避免相互干扰。同时,可以针对不同版本进行相同的用例测试,比对不同版本的效果,我们可以更好地评估每一次迭代的效果,从而实现更加精准的优化。
AI Workflow的最佳实践
AI Workflow的难点在于精确控制的记忆和自有系统逻辑的融合,主动被动结合沟通的场景,都需要我们在开发过程中进行细致的考虑和设计。另一方面面临不断的迭代,如分析不符合预期的回答和保证新变动不影响旧逻辑,则需要我们建立一套有效的测试和验证机制。在AI Workflow的开发中,除了敏捷开发的方法,还需要结合一些最佳实践,以提高开发效率和质量。
为什么是AI Workflow
AI Workflow之所以成为当前大模型落地的最佳实践,主要有以下几个原因:
-
ChatGPT等大模型虽然能力强大,但并非无所不能。AI Workflow通过工程化的手段,让大模型能够更好地适应特定领域的应用需求。
-
RAG(Retrieval-Augmented Generation)等技术,让大模型拥有特定领域的知识。通过这种方式,可以提高大模型在特定任务中的准确性和效率。
-
-
通过Prompt Pipeline等工程化手段,实现智能体解决方案。这种方式可以提高大模型的可扩展性和可维护性,使其更好地适应不同的应用场景。
AI Workflow的长期工程
AI Workflow是一个长期工程,需要持续的投入和优化。在这个过程中,敏捷开发的方法和最佳实践显得尤为重要。通过持续迭代、持续验证、持续反馈和持续交付,可以确保AI Workflow在不断的优化中,逐步提高其性能和效果。
大模型的出现与工程思维
随着大模型的出现,未来可能不再需要传统的编程语言。然而,工程思维是永久不变的。在AI Workflow的开发中,链路追踪、自动化测试和版本控制等工程化手段,仍然是不可或缺的。
-
链路追踪 - 调优中心:通过链路追踪,可以实时监控AI Workflow的执行过程,及时发现和解决问题。
-
自动化测试 - 测试中心:通过自动化测试,可以提高测试的效率和准确性,确保AI Workflow的稳定性和可靠性。
-
版本控制 - 流程版本:通过版本控制,可以确保不同版本的AI Workflow在测试和生产环境中的隔离,避免相互干扰。
结语
AI Workflow的敏捷开发是一个复杂而长期的过程。通过结合敏捷开发的方法和最佳实践,可以提高AI Workflow的开发效率和质量,实现大模型的高效落地。AI Workflow的敏捷开发不仅是一种技术实践,更是一种思维模式。它要求我们不断学习、适应和创新,以应对不断变化的技术环境。通过持续迭代、验证、反馈和交付,我们能够确保AI Workflow在实现智能化的同时,也能够满足用户的实际需求,推动人工智能技术的长远发展。