霍夫变换直线检测原理及 OpenCV API 应用

本文介绍了霍夫变换直线检测的基本原理和在OpenCV中的实现,包括HoughLines()和HoughLinesP()函数的使用,以及如何在实际应用中检测和绘制直线。
摘要由CSDN通过智能技术生成

霍夫变换直线检测原理及 OpenCV API 应用

1. 霍夫变换

霍夫变换(Hough Transform)于1962年由Paul Hough 首次提出,后于1972年由Richard Duda和Peter Hart推广使用,是图像处理领域内从图像中检测几何形状的基本方法之一。经典霍夫变换用来检测图像中的直线,后来霍夫变换经过扩展可以进行任意形状物体的识别,例如圆和椭圆。
霍夫变换运用两个坐标空间之间(图像空间和霍夫空间)的变换,将在一个图像空间中具有相同形状的曲线或直线映射成霍夫空间的一个点,从而把检测任意形状的问题转化为统计霍夫空间中点重合的问题。

在这里插入图片描述

更多关于霍夫变换的介绍可以参考:霍夫变换

2. 霍夫直线检测

2.1 算法流程

霍夫变换检测直线具体步骤如下:

  • 1.彩色图像转化为灰度图;

  • 2.去噪(高斯核);

  • 3.边缘提取(梯度算子、拉普拉斯算子、canny、sobel);

  • 4.二值化(判断此处是否为边缘点,就看灰度值==255);

  • 5.映射到霍夫空间(准备两个容器,一个用来展示 hough-space 概况,一个数组 hough-space 用来储存 voting 的值,因为投票过程往往有某个极大值超过阈值,多达几千,不能直接用灰度图来记录投票信息);

  • 6.取局部极大值,设定阈值,过滤干扰直线;

  • 7.绘制直线、标定角点

2.2 OpenCV API

2.2.1 HoughLines()

HoughLines() 函数可以进行标准和多尺度霍夫直线变换。

C++:void HoughLines(InputArray image, OutputArray lines, double rho, double theta, int threshold, double srn=0, double stn=0, double min_theta=0, double max_theta=CV_PI )

Items Disc.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值