霍夫变换圆检测原理及 OpenCV API 应用

本文介绍了霍夫圆检测的基本原理,包括圆在极坐标下的数学表达式,以及2-1霍夫变换的过程。还详细讲解了OpenCV中用于霍夫圆检测的API使用方法,并指出在实际应用中需要先进行去噪处理以提高检测准确性。
摘要由CSDN通过智能技术生成

霍夫变换圆检测原理及 OpenCV API 应用

1. 霍夫圆变换

霍夫圆检测和霍夫直线检测的原理类似。建议先理解霍夫直线检测的原理,再来看霍夫圆检测。

圆在极坐标下的数学表达式如下:
{ x = a + r ⋅ c o s θ y = b + r ⋅ s i n θ \left\{ \begin{aligned} x = a + r\cdot cos\theta \\ y = b + r\cdot sin\theta \\ \end{aligned} \right. { x=a+rcosθ

霍夫检测是一种用于检测图像中形的算法。在OpenCV中,霍夫检测是基于图像梯度的实现。具体原理如下: 1. 首先,对图像进行中值滤波,以减少噪声的影响\[1\]。 2. 接下来,通过检测边缘来发现可能的圆心。这一步使用图像梯度的方法来计算边缘\[1\]。 3. 在第一步的基础上,从候选圆心开始计算最佳半径大小。这一步使用霍夫变换的方法来确定半径\[1\]。 在OpenCV中,可以使用cv::HoughCircles函数来实现霍夫检测。该函数的参数包括输入图像、输出结果、方法、尺度因子、最短距离、Canny边缘检测的低阈值、中心点累加器阈值、最小半径和最大半径\[3\]。 总结来说,霍夫检测通过对图像进行中值滤波和边缘检测,然后使用霍夫变换来确定的位置和半径。这种方法可以有效地检测图像中的形物体。 #### 引用[.reference_title] - *1* [OpenCvSharp 学习笔记21-- 霍夫变换 - 检测 (Hough Circle transform)](https://blog.csdn.net/weixin_41049188/article/details/92422241)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [OpenCV 霍夫检测](https://blog.csdn.net/qq_44989881/article/details/116135750)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [OpenCV20---霍夫检测](https://blog.csdn.net/qq_45646174/article/details/105086711)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值