也许我们从来没有意识到,我们正生活在充满图的世界,例如,我们最熟悉的社交网络都是一个典型的图。
在计算机领域中,我们通常用图指代一种广义的抽象结构。用来表示一堆实体和它们之间的抽象关系。实体被叫做图的节点。而实体和实体之间的关系构成了图的边。严格来说,一个图
G
=
(
V
,
ε
)
G = (V,\varepsilon)
G=(V,ε)包含一个节点的集合
V
V
V,和一个边的集合
ε
\varepsilon
ε.以社交网络为例子,用户可以作为节点,而用户和用户之间的朋友关系可以作为边。事实上,作为表示实体关系和结构化数据的一种方式。图几乎无处不在,当我们在网上购物时候,用户和产品之间的购买关系可以形成用户—产品图。当我们在公司工作时候,有公司的组织结构图,当我们与朋友和同时发邮件时候、发微博交流时,则会产生交流图。
除此之外,在人工智能的研究和应用产品中,图的结构数据也占据了非常重要的地位。
- 在自然语言处理中常用的知识图谱中,图是用来表示领域知识,促进知识推理不可或缺的载体。
深度学习与图
毫无疑问,深度学习正在成为人类实现人工智能最重要的工具。在当前时代,在大量数据和超强计算资源的推动下,深度学习强大的表征能力使其在各个应用领域有了突破性的进展。时至今日,在人工智能各种任务的排行榜上,我们已经很难找到非深度学习的最优模型了。然而,大部分传统的深度学习模型,如CNN、RNN等。处理的数据都限定在欧几里空间,如二维的网络数据——图像和一维的序列数据——文本。因为它们的模型设计正得益于欧几里得空间中这些数据得一些性质。例如:平移不变性和局部可连通性。图数据不像图像和文本一样具有规则的欧几里得空间结构,因此,这些模型无法直接应用到图数据上。
图数据的特殊性质
- 节点的不均匀分布
- 图结构中,节点的度数可以任意变化,每个邻域中的节点数都可能不一样,我们没有办法直接把卷积操作复制到图上
- 排列的不变性
- 当我们任意变换两个节点在图结构中的空间位置时, 整个图的结构是不变的
- 边得额外属性
将深度学习扩展到图上得挑战
- 图数据得不规则性
- 图结构得多样性
- 图数据得大规模性。
- 图研究得跨领域性。