LSTM和双向LSTM讲解及实践

目录:

  • RNN的长期依赖问题
  • LSTM原理讲解
  • 双向LSTM原理讲解
  • keras实现LSTM和双向LSTM

RNN 的长期依赖问题

在上篇文章中介绍的循环神经网络RNN在训练的过程中会有长期依赖的问题,这是由于RNN模型在训练时会遇到梯度消失(大部分情况)或者梯度爆炸(很少,但对优化过程影响很大)的问题。对于梯度爆炸是很好解决的,可以使用梯度修剪(Gradient Clipping),即当梯度向量大于某个阈值,缩放梯度向量。但对于梯度消失是很难解决的。所谓的梯度消失或梯度爆炸是指训练时计算和反向传播,梯度倾向于在每一时刻递减或递增,经过一段时间后**,梯度就会收敛到零(消失)或发散到无穷大(爆炸)。简单来说,长期依赖的问题就是在每一个时间的间隔不断增大时**,RNN会丧失到连接到远处信息的能力

如下图,随着时间点t的不断递增,当t时刻和0时刻的时间间隔较大的时候 t t t时刻的记忆 h t ht ht可能已经丧失了学习连接到远处0时刻的信息的能力了
假定 x 0 x_0 x0,的输入为“我住在深圳”。后面插入了很多其他的句子,然后在 x t x_t xt输入了:我在市政府上班,由于 x 0 和 x t x_0和x_t x0xt相差很远,当RNN输入到 x t x_t xt时, t t t时刻的记忆已经丧失了 x 0 x_0 x0

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

big_matster

您的鼓励,是给予我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值