11down votefavorite
1
Any ideas how can I solve problem shown below? With the information that I found on the web it is associated with problem of reusing tensorflow scope however nothing works.
ValueError: Variable rnn/basic_rnn_cell/kernel already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at:
File "/code/backend/management/commands/RNN.py", line 370, in predict
states_series, current_state = tf.nn.dynamic_rnn(cell=cell, inputs=batchX_placeholder, dtype=tf.float32)
File "/code/backend/management/commands/RNN.py", line 499, in Command
predict("string")
File "/code/backend/management/commands/RNN.py", line 12, in <module>
class Command(BaseCommand):
I tried for instance something like this
with tf.variable_scope('scope'):
states_series, current_state = tf.nn.dynamic_rnn(cell=cell, inputs=batchX_placeholder, dtype=tf.float32)
and this
with tf.variable_scope('scope', reuse = True ):
states_series, current_state = tf.nn.dynamic_rnn(cell=cell, inputs=batchX_placeholder, dtype=tf.float32)
and this
with tf.variable_scope('scope', reuse = tf.AUTO_REUSE ):
states_series, current_state = tf.nn.dynamic_rnn(cell=cell, inputs=batchX_placeholder, dtype=tf.float32)
Any ideas?
python python-3.x machine-learning tensorflow neural-network
asked Nov 14 '17 at 23:26
user7304253
add a comment
1 Answer
up vote23down voteaccepted
Does this happen when you run the model for the first time (upon opening a new python console)?
If not, you need to clear you computational graph. You can do that by putting this line at the beginning of your script.
tf.reset_default_graph()