OpenVINO(Open Visual Inference and Neural Network Optimization)是由Intel开发的一款用于优化和部署深度学习模型的开源工具包。它主要针对视觉、音频等应用领域,提供了深度学习推理的加速。OpenVINO工具包支持从云端到边缘设备的深度学习模型优化,能够跨多种硬件平台加速推理过程,包括CPU、GPU、FPGA、AI加速器等。
主要特点
- 多硬件平台支持:OpenVINO支持多种硬件平台,包括Intel的CPU、集成GPU、VPU(视觉处理单元)以及FPGA等。
- 模型优化:它提供了模型优化器,可以将训练好的深度学习模型转换为OpenVINO的中间表示(Intermediate Representation, IR),以适应不同硬件平台。
- 推理加速:通过硬件加速和软件优化,OpenVINO能够显著提高深度学习模型的推理速度。
- 统一的API:OpenVINO提供了统一的API,简化了开发流程,使得开发者可以专注于应用逻辑而不必关心底层硬件细节。
- 插件开发框架:允许开发者扩展OpenVINO的功能,通过编写插件来优化特定硬件或算法的性能。
使用方法
使用OpenVINO通常包括以下步骤:
- 获取源代码:从GitHub等平台下载OpenVINO的源代码。
- 安装工具套件:从Intel官方网站下载并安装OpenVINO工具套件。
- 模型转换:使用OpenVINO提供的工具将深度学习模型转换为IR格式。
- 应用开发:使用OpenVINO的API开发应用程序,进行模型部署和推理。
应用场景
OpenVINO适用于多种应用场景,包括但不限于:
- 计算机视觉:如目标检测、图像分类、图像分割等。
- 语音识别:利用深度学习进行语音信号的处理和识别。
- 自然语言处理:在文本分析和理解方面发挥作用。
- 推荐系统:通过深度学习模型提供个性化推荐。
OpenVINO(Open Visual Inference and Neural Network Optimization)技术与Movidius也有关联。Movidius是Intel旗下的一个品牌,专注于为边缘设备提供视觉处理单元(VPU)。OpenVINO工具包提供了对Movidius VPU的支持,允许开发者利用Movidius硬件进行深度学习模型的推理加速。
具体来说,OpenVINO工具包包含了对Movidius SDK的扩展,增加了对深度学习功能的支持,包括模型优化器和推理引擎。此外,OpenVINO还在Movidius SDK的基础上增加了对OpenCV、OpenVX等传统计算机视觉领域广泛使用的函数库的支持,并且这些函数库都在Intel的CPU上进行了优化。
在Raspberry Pi这样的资源受限设备上,通过使用OpenVINO和Movidius Neural Compute Stick(NCS),可以实现高效的深度学习推理。OpenVINO通过设置目标处理器(一个函数调用)来简化使用流程,让OpenCV处理其余部分,从而优化了在Movidius硬件上的计算机视觉任务。
此外,OpenVINO支持Movidius Myriad 2设备,并且可以在Windows 10上使用。这表明OpenVINO不仅支持Intel的CPU和集成GPU,还包括对Movidius VPU的支持,进一步扩展了其在边缘设备上的应用范围。
总的来说,OpenVINO与Movidius的结合为用户提供了一种强大的工具,用于在边缘设备上进行深度学习模型的部署和推理,尤其是在资源受限的环境中。