sklearn之train_test_split()解析

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/KyrieHe/article/details/77507473

train_test_split()是sklearn.cross_validation模块中用来随机划分训练集和测试集,以Iris数据集为例。

有以下四个特征
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm

分为3个类别:
- Iris Setosa
- Iris Versicolour
- Iris Virginica

我们通过代码展示可视化展示这些数据

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) # 加载Iris数据集作为DataFrame对象
X = df.iloc[:, [0, 2]].values # 取出2个特征,并把它们用Numpy数组表示

plt.scatter(X[:50, 0], X[:50, 1],color='red', marker='o', label='setosa') # 前50个样本的散点图
plt.scatter(X[50:100, 0], X[50:100, 1],color='blue', marker='x', label='versicolor') # 中间50个样本的散点图
plt.scatter(X[100:, 0], X[100:, 1],color='green', marker='+', label='Virginica') # 后50个样本的散点图
plt.xlabel('petal length')
plt.ylabel('sepal length')
plt.legend(loc=2) # 说明放在左上角
plt.show()

如下图所示

train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train datatest data,形式为:
X_train,X_test, y_train, y_test = cross_validation.train_test_split(train_data,train_target,test_size=0.4, random_state=0)

参数代表含义:
train_data:所要划分的样本特征集
train_target:所要划分的样本结果
test_size:样本占比,如果是整数的话就是样本的数量
random_state:是随机数的种子。

from sklearn import datasets
import numpy as np
from sklearn.cross_validation import train_test_split

iris = datasets.load_iris() # 加载Iris数据集。
X = iris.data[:, [2, 3]]
y = iris.target # 标签已经转换成0,1,2了
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) # 为了看模型在没有见过数据集上的表现,随机拿出数据集中30%的部分做测试

# 为了追求机器学习和最优化算法的最佳性能,我们将特征缩放
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train) # 估算每个特征的平均值和标准差
sc.mean_ # 查看特征的平均值,由于Iris我们只用了两个特征,结果是array([ 3.82857143,  1.22666667])
sc.scale_ # 查看特征的标准差,结果是array([ 1.79595918,  0.77769705])
X_train_std = sc.transform(X_train)
# 注意:这里我们要用同样的参数来标准化测试集,使得测试集和训练集之间有可比性
X_test_std = sc.transform(X_test)

# 训练感知机模型
from sklearn.linear_model import Perceptron
# n_iter:可以理解成梯度下降中迭代的次数
# eta0:可以理解成梯度下降中的学习率
# random_state:设置随机种子的,为了每次迭代都有相同的训练集顺序
ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)
ppn.fit(X_train_std, y_train)

# 分类测试集,这将返回一个测试结果的数组
y_pred = ppn.predict(X_test_std)
# 计算模型在测试集上的准确性
accuracy_score(y_test, y_pred)

参考资料: http://blog.csdn.net/xlinsist/article/details/51289825

阅读更多
换一批

没有更多推荐了,返回首页