【动态规划-中等】931. 下降路径最小和

643 篇文章 5 订阅
该博客介绍了一个寻找给定方形整数数组(矩阵)中下降路径最小和的问题。下降路径从第一行的任意元素开始,每行选取一个元素,且下一行元素最多与当前行元素相隔一列。提供的代码示例展示了如何实现这一算法,通过迭代更新每一行的元素,最后返回矩阵最后一行的最小和。
摘要由CSDN通过智能技术生成

题目
给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

示例 1:

输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:下面是两条和最小的下降路径,用加粗+斜体标注:
[[2,1,3], [[2,1,3],
[6,5,4], [6,5,4],
[7,8,9]] [7,8,9]]

示例 2:

输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:下面是一条和最小的下降路径,用加粗+斜体标注:
[[-19,57],
[-40,-5]]

示例 3:

输入:matrix = [[-48]]
输出:-48

提示:

n == matrix.length
n == matrix[i].length
1 <= n <= 100
-100 <= matrix[i][j] <= 100

【代码】
在这里插入图片描述

class Solution:
    def minFallingPathSum(self, matrix: List[List[int]]) -> int:
        for i in range(1,len(matrix)):
            matrix[i][0]+=min(matrix[i-1][0],matrix[i-1][1])
            matrix[i][-1]+=min(matrix[i-1][-1],matrix[i-1][-2])
            for j in range(1,len(matrix[0])-1):
                matrix[i][j]+=min(matrix[i-1][j],matrix[i-1][j+1],matrix[i-1][j-1])
        return min(matrix[-1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值