MATLAB优化
学习目标
- 了解MATLAB常见优化问题
- 掌握MATLAB求解优化问题的方法
1. 常见优化问题
在数学上,所谓优化问题,在给定的条件下求解目标函数的最优解。当给定条件为空时,此优化问题称为自由优化或无约束优化问题;当给定条件不空时,称为有约束优化或强约束优化问题。
在优化问题中,根据变量、目标函数和约束函数的不同,可以将问题大致分为:
- 线性优化:目标函数和约束函数均为线性函数。
- 二次优化:目标函数为二次函数,而约束条件为线性方程。线性优化和二次优化统称为简单优化。
- 非线性优化:目标函数为非二次的非线性函数,或约束条件为非线性方程。
1.1无约束非线性优化
无约束最优化问题在实际应用中也比较常见,如工程中常见的参数反演问题。另外,许多有约束最优化问题可以转化为无约束最优化问题进行求解。求解无约束最优化问题的方法主要有两类,即直接搜索法和梯度法。
- 直接搜索法适用于目标函数高度非线性,没有导数或导数很难计算的情况。由于实际工程中很多问题都是非线性的,直接搜索法不失为一种有效的解决办法。常用的直接搜索法为单纯形法,此外还有Hooke-Jeeves搜索法、Pavell共轭方向法等,其缺点是收敛速度慢。
- 在函数的导数可求的情况下,梯度法是一种更优的方法,该法利用函数的梯度(一阶导数)和Hessian矩阵(二阶导数)构造算法,可以获得更快的收敛速度。
在MATLAB中,无约束规划由3个功能函数fminbnd、fminsearch和fminunc实现。
1.fminbnd函数
该函数的功能是求取固定区间内单变量函数的最小值,也就是一元函数最小值问题。其数学模型为:
式中,x均为标量,f(x)为目标函数。
2.fminsearch函数
该函数功能为求解多变量无约束函数的最小值。其数学模型是:
其中,x为向量,f(x)为一函数,返回标量。
【例】求的最小值。
MATLAB命令行窗口输入以下代码:
clear all
clc
f='3*x(1)^3+3*x(1)*x(2)^3-7*x