简单的梁的载荷计算

集总质量参数,微梁结构

如果一个运动构件上的各点总是具有相同或近似相同的运动状态(速度),那么这种构件本身就是集总参数构件,其集总等效质量就是运动部件的总质量。
M = Σ i = 1 n m i = Σ i = 1 n ρ i A i H i M = \Sigma _{i=1}^n m_i = \Sigma _{i=1}^n \rho_iA_iH_i M=Σi=1nmi=Σi=1nρiAiHi
A i A_i Ai为面积, ρ i \rho_i ρi为密度, H i H_i Hi为厚度

微悬臂梁

对常见微悬臂梁而言
设其总长为 l l l,x方向线密度 ρ ( x ) \rho (x) ρ(x),各点运动速度为 v ( x ) v(x) v(x),观察点距离根部的距离为 l m l_m lm在这里插入图片描述
由能量守恒定律可知,在观察点处的集总参数等效质量 M e f f e c t = ∫ 0 1 ρ ( x ) v 2 ( x ) d x v 2 ( l m ) M_{effect}=\frac{\int_0^1\rho (x)v^2(x)dx}{v^2(l_m)} Meffect=v2(lm)01ρ(x)v2(x)dx

弹性系统

如果一个弹性系统的等效集总质量为M,弹性系数为k,则固有频率为
ω n = k / M \omega_n = \sqrt{k/M} ωn=k/M
f = 1 2 π k M f = \frac{1}{2\pi}\sqrt{\frac{k}{M}} f=2π1Mk

在材料力学中,我们知道在弹性形变范围内轴向应力应变关系有
σ = E ϵ \sigma = E \epsilon σ=Eϵ
横向负载时剪切应力应变关系有
τ = G γ \tau = G\gamma τ=Gγ
G = E 2 ( 1 + ν ) G = \frac{E}{2(1+\nu)} G=2(1+ν)E

我们在将弹性系数参数化时,应先求出该结构在特定负载 F s F_s Fs下的变形量 w s w_s ws,根据胡克定律
等效弹性系数 k = F s w s k = \frac{F_s}{w_s} k=wsFs

一个简单的例子

在这里插入图片描述
弹性系数 k = F δ L k = \frac{F}{\delta L} k=δLF
首先求出 δ L = L ϵ \delta L =L\epsilon δL=Lϵ,就是长度x应变
ϵ = σ E = 1 E F W H \epsilon = \frac{\sigma}{E} = \frac{1}{E}\frac{F}{WH} ϵ=Eσ=E1WHF
带入可以计算出 k = E W H L k=\frac{EWH}{L} k=LEWH

如果在轴向的截面积并不相同的话,也可以计算,就相当于是多段弹簧串联
根据材料力学知识可知
k = 1 ∫ 0 L d x E ⋅ A ( x ) k = \frac{1}{\int _0^L \frac{dx}{E·A(x)}} k=0LEA(x)dx1
例如下图,杨氏模量160G,中间部分长50um,宽20um,两端长40um,宽40um
在这里插入图片描述
可以通过 k 2 = 1 1 E × ( 40 μ m A 1 + 50 μ m A 2 + 40 μ m A 1 ) k_2 = \frac{1}{\frac{1}{E}\times(\frac{40\mu m}{A_1}+\frac{50\mu m}{A_2}+\frac{40\mu m}{A_1})} k2=E1×(A140μm+A250μm+A140μm)1来计算

微梁的挠度曲线计算

微矩形截面梁的惯性矩

在这里插入图片描述
其惯性矩为 I = W H 3 12 I = \frac{WH^3}{12} I=12WH3

微梁的负载

集中载荷

在这里插入图片描述

均布载荷

在这里插入图片描述

挠度曲线计算

在这里插入图片描述
梁上某一点弯曲后的曲率半径与该点弯矩M有关
1 ρ = M E I \frac{1}{\rho}=\frac{M}{EI} ρ1=EIM
θ = t a n θ = d w / d x \theta = tan \theta=dw/dx θ=tanθ=dw/dx
d x ≈ d s = d w d x dx \approx ds = \frac{dw}{dx} dxds=dxdw
d 2 w d x 2 = d θ d x = 1 ρ \frac{d^2w}{dx^2} =\frac{d\theta}{dx}=\frac{1}{\rho} dx2d2w=dxdθ=ρ1
因此有小挠度下的 d 2 w d x 2 = M E I \frac{d^2w}{dx^2}=\frac{M}{EI} dx2d2w=EIM

一些典型案例

集中载荷

悬臂梁的弹性系数在这里插入图片描述

二次积分可以算出来挠曲线方程
w ( x ) = F x 2 6 E I ( 3 L − x ) w(x) = \frac{Fx^2}{6EI}(3L-x) w(x)=6EIFx2(3Lx)
因此在施力点的 w = L 3 3 E I F w = \frac{L^3}{3EI}F w=3EIL3F
那么弹性系数 k 3 = F w m a x = 3 E I L 3 k_3 = \frac{F}{w_{max}}=\frac{3EI}{L^3} k3=wmaxF=L33EI

悬臂梁的角弹性系数

同理可以计算出自由端的角度 θ = 6 L 2 E W H 3 F \theta = \frac{6L^2}{EWH^3}F θ=EWH36L2F

因此对角位移的弹性系数为 k = F θ m a x = 2 E I L 2 = E W H 3 6 L 2 k = \frac{F}{\theta_{max}}=\frac{2EI}{L^2} = \frac{EWH^3}{6L^2} k=θmaxF=L22EI=6L2EWH3

均布载荷

在这里插入图片描述
同理可证
w ( x ) = q x 2 24 E I ( x 2 + 6 L 2 − 4 L x ) w(x)=\frac{qx^2}{24EI}(x^2+6L^2-4Lx) w(x)=24EIqx2(x2+6L24Lx)
w m a x = L 4 8 E I q w_{max}=\frac{L^4}{8EI}q wmax=8EIL4q
θ m a x = L 3 6 E I q \theta_{max}=\frac{L^3}{6EI}q θmax=6EIL3q

简单结论

相同结构参数的悬臂梁要比轴向负载梁弹性系数小的多
如果微执行器需要产生相同的位移输出,悬臂梁需要的驱动力要比轴向负载梁小得多
因此悬臂梁被广泛使用做传感器或执行器

两端固支的为梁结构

在这里插入图片描述
在这种结构中,横向负载和轴向应力相互耦合,会体现出很强的非线性特性。
同样根据材料力学知识可以计算出
w ( x ) = P x 2 24 E I ( L − x ) 2 = P x 2 2 E W H 3 ( L − x ) 2 w(x) = \frac{Px^2}{24EI}(L-x)^2=\frac{Px^2}{2EWH^3}(L-x)^2 w(x)=24EIPx2(Lx)2=2EWH3Px2(Lx)2
对于实际应用而言,我们希望取灵敏度最大的地方,自然就是最中间
w = P L 4 32 E W H 3 w = \frac{PL^4}{32EWH^3} w=32EWH3PL4
此时等效弹性系数 k = 32 E W H 3 L 4 k=\frac{32EWH^3}{L^4} k=L432EWH3

虚功原理

虚位移指的是弹性体(或结构系)的附加的满足约束条件及连续条件的无限小可能位移。所谓虚位移的"虚"字表示它可以与真实的受力结构的变形而产生的真实位移无关,而可能由于其它原因(如温度变化,或其它外力系,或是其它干扰)造成的满足位移约束、连续条件的几何可能位移。对于虚位移要求是微小位移,即要求在产生虚位移过程中不改变原受力平衡体的力的作用方向与大小,亦即受力平衡体平衡状态不因产生虚位移而改变。真实力在虚位移上做的功称为虚功。
根据虚功原理可以计算出均布载荷P和中心点最大挠度c的关系为
P = ( π 4 3 ) [ E W H 3 L 4 ] c + ( π 4 4 ) [ E W H L 4 ] c 3 P =(\frac{\pi^4}{3})[\frac{EWH^3}{L^4}]c+(\frac{\pi^4}{4})[\frac{EWH}{L^4}]c^3 P=(3π4)[L4EWH3]c+(4π4)[L4EWH]c3
计算弹性系数 k = P c = ( π 4 3 ) [ E W H 3 L 4 ] + ( π 4 4 ) [ E W H L 4 ] c 2 k = \frac{P}{c}=(\frac{\pi^4}{3})[\frac{EWH^3}{L^4}]+(\frac{\pi^4}{4})[\frac{EWH}{L^4}]c^2 k=cP=(3π4)[L4EWH3]+(4π4)[L4EWH]c2
可见除了线性项还有一个非线性项,而且形变越大非线性越明显。

一个近似

k = ( π 4 3 ) E W H 3 L 4 [ 1 + 3 4 ( c H ) 2 ] k =(\frac{\pi^4}{3})\frac{EWH^3}{L^4}[1+\frac{3}{4}(\frac{c}{H})^2] k=(3π4)L4EWH3[1+43(Hc)2]
当c<<H时非线性可以忽略,就可以近似为
k ≈ 32.47 × E W H 3 L 4 k \approx \frac{32.47\times EWH^3}{L^4} kL432.47×EWH3

针对集中载荷在这里插入图片描述

F与c的关系为
F = ( π 4 6 ) [ E W H 3 L 3 ] c + ( π 4 8 ) [ E W H L 3 ] c 3 F = (\frac{\pi^4}{6})[\frac{EWH^3}{L^3}]c+(\frac{\pi^4}{8})[\frac{EWH}{L^3}]c^3 F=(6π4)[L3EWH3]c+(8π4)[L3EWH]c3
弹性系数为
k = ( π 4 6 ) E W H 3 L 3 ] [ 1 + 3 4 ( c H ) 2 ] k = (\frac{\pi^4}{6})\frac{EWH^3}{L^3}][1+\frac{3}{4}(\frac{c}{H})^2] k=(6π4)L3EWH3][1+43(Hc)2]
同样可以近似为
k ≈ π 4 E W H 3 6 L 3 k \approx\frac{\pi^4EWH^3}{6L^3} k6L3π4EWH3

简支梁的简单计算

在这里插入图片描述
简支梁挠曲线方程为
w ( x ) = F b x 6 L E I ( L 2 − x 2 − b 2 )     ( 0 ≤ x ≤ a ) w(x) = \frac{Fbx}{6LEI}(L^2 - x^2 -b^2) \ \ \ (0 \leq x \leq a) w(x)=6LEIFbx(L2x2b2)   (0xa)
w ( x ) = F b x 6 L E I ( L b ( x − a ) 3 + ( L 2 − b 2 ) x − x 3 )     ( a ≤ x ≤ l ) w(x) = \frac{Fbx}{6LEI}( \frac{L}{b}(x-a)^3 +(L^2 - b^2)x - x^3 ) \ \ \ (a\leq x\leq l) w(x)=6LEIFbx(bL(xa)3+(L2b2)xx3)   (axl)
当负载点在中心时
k = 4 E W H 3 L 3 k = \frac{4EWH^3}{L^3} k=L34EWH3
对于均布载荷,有
k = 32 E W H 3 5 L 4 k = \frac{32EWH^3}{5L^4} k=5L432EWH3

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值