集总质量参数,微梁结构
如果一个运动构件上的各点总是具有相同或近似相同的运动状态(速度),那么这种构件本身就是集总参数构件,其集总等效质量就是运动部件的总质量。
M
=
Σ
i
=
1
n
m
i
=
Σ
i
=
1
n
ρ
i
A
i
H
i
M = \Sigma _{i=1}^n m_i = \Sigma _{i=1}^n \rho_iA_iH_i
M=Σi=1nmi=Σi=1nρiAiHi
A
i
A_i
Ai为面积,
ρ
i
\rho_i
ρi为密度,
H
i
H_i
Hi为厚度
微悬臂梁
对常见微悬臂梁而言
设其总长为
l
l
l,x方向线密度
ρ
(
x
)
\rho (x)
ρ(x),各点运动速度为
v
(
x
)
v(x)
v(x),观察点距离根部的距离为
l
m
l_m
lm
由能量守恒定律可知,在观察点处的集总参数等效质量
M
e
f
f
e
c
t
=
∫
0
1
ρ
(
x
)
v
2
(
x
)
d
x
v
2
(
l
m
)
M_{effect}=\frac{\int_0^1\rho (x)v^2(x)dx}{v^2(l_m)}
Meffect=v2(lm)∫01ρ(x)v2(x)dx
弹性系统
如果一个弹性系统的等效集总质量为M,弹性系数为k,则固有频率为
ω
n
=
k
/
M
\omega_n = \sqrt{k/M}
ωn=k/M
f
=
1
2
π
k
M
f = \frac{1}{2\pi}\sqrt{\frac{k}{M}}
f=2π1Mk
在材料力学中,我们知道在弹性形变范围内轴向应力应变关系有
σ
=
E
ϵ
\sigma = E \epsilon
σ=Eϵ
横向负载时剪切应力应变关系有
τ
=
G
γ
\tau = G\gamma
τ=Gγ
G
=
E
2
(
1
+
ν
)
G = \frac{E}{2(1+\nu)}
G=2(1+ν)E
我们在将弹性系数参数化时,应先求出该结构在特定负载
F
s
F_s
Fs下的变形量
w
s
w_s
ws,根据胡克定律
等效弹性系数
k
=
F
s
w
s
k = \frac{F_s}{w_s}
k=wsFs
一个简单的例子
弹性系数
k
=
F
δ
L
k = \frac{F}{\delta L}
k=δLF
首先求出
δ
L
=
L
ϵ
\delta L =L\epsilon
δL=Lϵ,就是长度x应变
ϵ
=
σ
E
=
1
E
F
W
H
\epsilon = \frac{\sigma}{E} = \frac{1}{E}\frac{F}{WH}
ϵ=Eσ=E1WHF
带入可以计算出
k
=
E
W
H
L
k=\frac{EWH}{L}
k=LEWH
如果在轴向的截面积并不相同的话,也可以计算,就相当于是多段弹簧串联
根据材料力学知识可知
k
=
1
∫
0
L
d
x
E
⋅
A
(
x
)
k = \frac{1}{\int _0^L \frac{dx}{E·A(x)}}
k=∫0LE⋅A(x)dx1
例如下图,杨氏模量160G,中间部分长50um,宽20um,两端长40um,宽40um
可以通过
k
2
=
1
1
E
×
(
40
μ
m
A
1
+
50
μ
m
A
2
+
40
μ
m
A
1
)
k_2 = \frac{1}{\frac{1}{E}\times(\frac{40\mu m}{A_1}+\frac{50\mu m}{A_2}+\frac{40\mu m}{A_1})}
k2=E1×(A140μm+A250μm+A140μm)1来计算
微梁的挠度曲线计算
微矩形截面梁的惯性矩
其惯性矩为
I
=
W
H
3
12
I = \frac{WH^3}{12}
I=12WH3
微梁的负载
集中载荷
均布载荷
挠度曲线计算
梁上某一点弯曲后的曲率半径与该点弯矩M有关
1
ρ
=
M
E
I
\frac{1}{\rho}=\frac{M}{EI}
ρ1=EIM
θ
=
t
a
n
θ
=
d
w
/
d
x
\theta = tan \theta=dw/dx
θ=tanθ=dw/dx
d
x
≈
d
s
=
d
w
d
x
dx \approx ds = \frac{dw}{dx}
dx≈ds=dxdw
d
2
w
d
x
2
=
d
θ
d
x
=
1
ρ
\frac{d^2w}{dx^2} =\frac{d\theta}{dx}=\frac{1}{\rho}
dx2d2w=dxdθ=ρ1
因此有小挠度下的
d
2
w
d
x
2
=
M
E
I
\frac{d^2w}{dx^2}=\frac{M}{EI}
dx2d2w=EIM
一些典型案例
集中载荷
悬臂梁的弹性系数
二次积分可以算出来挠曲线方程
w
(
x
)
=
F
x
2
6
E
I
(
3
L
−
x
)
w(x) = \frac{Fx^2}{6EI}(3L-x)
w(x)=6EIFx2(3L−x)
因此在施力点的
w
=
L
3
3
E
I
F
w = \frac{L^3}{3EI}F
w=3EIL3F
那么弹性系数
k
3
=
F
w
m
a
x
=
3
E
I
L
3
k_3 = \frac{F}{w_{max}}=\frac{3EI}{L^3}
k3=wmaxF=L33EI
悬臂梁的角弹性系数
同理可以计算出自由端的角度 θ = 6 L 2 E W H 3 F \theta = \frac{6L^2}{EWH^3}F θ=EWH36L2F
因此对角位移的弹性系数为 k = F θ m a x = 2 E I L 2 = E W H 3 6 L 2 k = \frac{F}{\theta_{max}}=\frac{2EI}{L^2} = \frac{EWH^3}{6L^2} k=θmaxF=L22EI=6L2EWH3
均布载荷
同理可证
w
(
x
)
=
q
x
2
24
E
I
(
x
2
+
6
L
2
−
4
L
x
)
w(x)=\frac{qx^2}{24EI}(x^2+6L^2-4Lx)
w(x)=24EIqx2(x2+6L2−4Lx)
w
m
a
x
=
L
4
8
E
I
q
w_{max}=\frac{L^4}{8EI}q
wmax=8EIL4q
θ
m
a
x
=
L
3
6
E
I
q
\theta_{max}=\frac{L^3}{6EI}q
θmax=6EIL3q
简单结论
相同结构参数的悬臂梁要比轴向负载梁弹性系数小的多
如果微执行器需要产生相同的位移输出,悬臂梁需要的驱动力要比轴向负载梁小得多
因此悬臂梁被广泛使用做传感器或执行器
两端固支的为梁结构
在这种结构中,横向负载和轴向应力相互耦合,会体现出很强的非线性特性。
同样根据材料力学知识可以计算出
w
(
x
)
=
P
x
2
24
E
I
(
L
−
x
)
2
=
P
x
2
2
E
W
H
3
(
L
−
x
)
2
w(x) = \frac{Px^2}{24EI}(L-x)^2=\frac{Px^2}{2EWH^3}(L-x)^2
w(x)=24EIPx2(L−x)2=2EWH3Px2(L−x)2
对于实际应用而言,我们希望取灵敏度最大的地方,自然就是最中间
w
=
P
L
4
32
E
W
H
3
w = \frac{PL^4}{32EWH^3}
w=32EWH3PL4
此时等效弹性系数
k
=
32
E
W
H
3
L
4
k=\frac{32EWH^3}{L^4}
k=L432EWH3
虚功原理
虚位移指的是弹性体(或结构系)的附加的满足约束条件及连续条件的无限小可能位移。所谓虚位移的"虚"字表示它可以与真实的受力结构的变形而产生的真实位移无关,而可能由于其它原因(如温度变化,或其它外力系,或是其它干扰)造成的满足位移约束、连续条件的几何可能位移。对于虚位移要求是微小位移,即要求在产生虚位移过程中不改变原受力平衡体的力的作用方向与大小,亦即受力平衡体平衡状态不因产生虚位移而改变。真实力在虚位移上做的功称为虚功。
根据虚功原理可以计算出均布载荷P和中心点最大挠度c的关系为
P
=
(
π
4
3
)
[
E
W
H
3
L
4
]
c
+
(
π
4
4
)
[
E
W
H
L
4
]
c
3
P =(\frac{\pi^4}{3})[\frac{EWH^3}{L^4}]c+(\frac{\pi^4}{4})[\frac{EWH}{L^4}]c^3
P=(3π4)[L4EWH3]c+(4π4)[L4EWH]c3
计算弹性系数
k
=
P
c
=
(
π
4
3
)
[
E
W
H
3
L
4
]
+
(
π
4
4
)
[
E
W
H
L
4
]
c
2
k = \frac{P}{c}=(\frac{\pi^4}{3})[\frac{EWH^3}{L^4}]+(\frac{\pi^4}{4})[\frac{EWH}{L^4}]c^2
k=cP=(3π4)[L4EWH3]+(4π4)[L4EWH]c2
可见除了线性项还有一个非线性项,而且形变越大非线性越明显。
一个近似
k
=
(
π
4
3
)
E
W
H
3
L
4
[
1
+
3
4
(
c
H
)
2
]
k =(\frac{\pi^4}{3})\frac{EWH^3}{L^4}[1+\frac{3}{4}(\frac{c}{H})^2]
k=(3π4)L4EWH3[1+43(Hc)2]
当c<<H时非线性可以忽略,就可以近似为
k
≈
32.47
×
E
W
H
3
L
4
k \approx \frac{32.47\times EWH^3}{L^4}
k≈L432.47×EWH3
针对集中载荷
F与c的关系为
F
=
(
π
4
6
)
[
E
W
H
3
L
3
]
c
+
(
π
4
8
)
[
E
W
H
L
3
]
c
3
F = (\frac{\pi^4}{6})[\frac{EWH^3}{L^3}]c+(\frac{\pi^4}{8})[\frac{EWH}{L^3}]c^3
F=(6π4)[L3EWH3]c+(8π4)[L3EWH]c3
弹性系数为
k
=
(
π
4
6
)
E
W
H
3
L
3
]
[
1
+
3
4
(
c
H
)
2
]
k = (\frac{\pi^4}{6})\frac{EWH^3}{L^3}][1+\frac{3}{4}(\frac{c}{H})^2]
k=(6π4)L3EWH3][1+43(Hc)2]
同样可以近似为
k
≈
π
4
E
W
H
3
6
L
3
k \approx\frac{\pi^4EWH^3}{6L^3}
k≈6L3π4EWH3
简支梁的简单计算
简支梁挠曲线方程为
w
(
x
)
=
F
b
x
6
L
E
I
(
L
2
−
x
2
−
b
2
)
(
0
≤
x
≤
a
)
w(x) = \frac{Fbx}{6LEI}(L^2 - x^2 -b^2) \ \ \ (0 \leq x \leq a)
w(x)=6LEIFbx(L2−x2−b2) (0≤x≤a)
w
(
x
)
=
F
b
x
6
L
E
I
(
L
b
(
x
−
a
)
3
+
(
L
2
−
b
2
)
x
−
x
3
)
(
a
≤
x
≤
l
)
w(x) = \frac{Fbx}{6LEI}( \frac{L}{b}(x-a)^3 +(L^2 - b^2)x - x^3 ) \ \ \ (a\leq x\leq l)
w(x)=6LEIFbx(bL(x−a)3+(L2−b2)x−x3) (a≤x≤l)
当负载点在中心时
k
=
4
E
W
H
3
L
3
k = \frac{4EWH^3}{L^3}
k=L34EWH3
对于均布载荷,有
k
=
32
E
W
H
3
5
L
4
k = \frac{32EWH^3}{5L^4}
k=5L432EWH3