梁的屈曲问题求解

压杆由稳定平衡过渡到不稳定平衡时的轴向压力称为临界载荷P_{cr}。若轴向压力超过临界力,压杆在微小的侧向干扰力下,就会发生较大弯曲,甚至丧失承载能力。

临界载荷的求解有多种方法,这里介绍一种基于能量的解法。

假设梁的屈曲问题配置如下:

在梁的两端作用有大小为P的力,在梁上分布有随载荷线性变化的分布力q,梁的最大挠度为v_c,梁的长度为L,一端固定但可自由旋转,一端简支。

位移函数假设

首先假设在上述配置及外力作用下,梁的变形模式,用sin函数描述:

为了造成这一位移,假设分布式载荷也按照sin函数模式变化:

上面两式中,v_cq_c分别表示位移和分布式载荷的最大值,作为sin函数的幅值。后续的目标是求解这一幅值,以及使幅值超出有限范围的临界载荷。

弯曲应变能

梁在弯曲后,其弯曲应变能按照如下公式计算:

式中v_{xx}表示挠度函数的二阶导数,I_z表示截面的惯性矩,E表示梁体材料的弹性模量。

薄膜能量变化

由于梁的弯曲,其长度相比初始状态有变化,因此轴向力在这一长度变化上做工,产生了所谓薄膜能量变化,其大小为:

分布式载荷做功

分布式载荷在梁产生挠度的过程中做功,其大小为:

总能量计算

梁变形后的总能量计算遵照下式,将所有能量叠加:

幅值计算

梁的平衡状态通过计算。综合上述式子,可得计算结果:

轴向载荷可能使挠度增加或减小,这取决于轴向载荷P是拉力还是压力。

临界载荷计算

当P在q_c=0时能够使v_c不不为0(即去除扰动后依旧能维持挠度),此时发生屈曲。从方程k+k_{\sigma}=0可以得到:

P_{cr}=-\pi^2EI_z/L^2

这就是经典的欧拉屈曲载荷。

参考文献

1.凌伟 等,《材料力学》;

2.Robert D.Cook 等,《有限元分析的概念与应用》第四版;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值