压杆由稳定平衡过渡到不稳定平衡时的轴向压力称为临界载荷。若轴向压力超过临界力,压杆在微小的侧向干扰力下,就会发生较大弯曲,甚至丧失承载能力。
临界载荷的求解有多种方法,这里介绍一种基于能量的解法。
假设梁的屈曲问题配置如下:
在梁的两端作用有大小为的力,在梁上分布有随载荷线性变化的分布力,梁的最大挠度为,梁的长度为,一端固定但可自由旋转,一端简支。
位移函数假设
首先假设在上述配置及外力作用下,梁的变形模式,用sin函数描述:
为了造成这一位移,假设分布式载荷也按照sin函数模式变化:
上面两式中,、分别表示位移和分布式载荷的最大值,作为sin函数的幅值。后续的目标是求解这一幅值,以及使幅值超出有限范围的临界载荷。
弯曲应变能
梁在弯曲后,其弯曲应变能按照如下公式计算:
式中表示挠度函数的二阶导数,表示截面的惯性矩,表示梁体材料的弹性模量。
薄膜能量变化
由于梁的弯曲,其长度相比初始状态有变化,因此轴向力在这一长度变化上做工,产生了所谓薄膜能量变化,其大小为:
分布式载荷做功
分布式载荷在梁产生挠度的过程中做功,其大小为:
总能量计算
梁变形后的总能量计算遵照下式,将所有能量叠加:
幅值计算
梁的平衡状态通过计算。综合上述式子,可得计算结果:
轴向载荷可能使挠度增加或减小,这取决于轴向载荷P是拉力还是压力。
临界载荷计算
当P在时能够使不不为0(即去除扰动后依旧能维持挠度),此时发生屈曲。从方程可以得到:
这就是经典的欧拉屈曲载荷。
参考文献
1.凌伟 等,《材料力学》;
2.Robert D.Cook 等,《有限元分析的概念与应用》第四版;