最近帮朋友整个简单的烟雾传感系统,准备以几篇文章记录一下相关的工作。
常见的烟雾检测技术
离子式烟雾传感器
离子式烟雾传感器顾名思义和离子有关,传感器中存在一个电离室,其中有一个放射源(常为镅241).在通常状态下该放射源会将空气电离产生正负离子。这些离子在电离室的两个极板间加上电压后会形成电流。当烟雾中的大颗粒经过时,会对离子流产生阻碍作用,进而减小电流。
电流的减小和烟雾浓度基本成正比关系。1
虽然这放射源的辐射剂量是在可控范围内,没什么危害,但是好兄弟不想用这个,就算了。
半导体烟雾传感器
半导体传感器的主要原理就是依靠材料了
以最为知名(就是网上一搜一大片文章全提的这玩意)的MQ-2传感器为例,其表面有在空气中电导率较低的二氧化锡(SnO2)材料,常态表现为高电阻的状态。当传感器所处的环境存在特定气体(可燃气体、烟雾等)时,传感器的电导率随其浓度增大而增大,在电路中反应为传感器的电阻减小。
具体的测量电路及后续系统咱们以后再说,今天就先看看这个原理,毕竟网上那么多文章都就提了个电阻减小。
SnO2在O空位的情况下,金属氧化物被还原,一些电子填充到导带的底部。氧化物薄膜的导电性与氧化物生长过程中所产生的氧空位有关,氧空位浓度越高,其导电性就越高。(更详细的内容可以学习半导体物理学、固体物理学)
SnO2传感器的检测原理是气体吸附时敏感材料表面发生化学催化反应,进而导致氧化物的晶粒间传导受到阻碍。
而当有气体被吸附在敏感材料表面时,离子的迁移就没那么容易,形成Sn2+与电子分布高度不对称的状况。2
现在许多高校的课题组名曰研究半导体传感器,当被测量变化的时候传感器的能带怎么变带隙怎么变,可实际上只是在材料灌水,希望这些研究能调整一下思路,孕育出有意义的工业化产品。
光电式烟雾传感器
相比简单粗糙的半导体传感器而言,光电式的烟雾传感器就精巧的许多了。
它往往有发射器和接收器(一般是红外二极管加个光电二极管),然后通过烟雾大颗粒对发射器发出光线的散射影响接收器产出的信号,进而判断是否有烟雾。
一说到光电式,我们很容易就能想到两个基本的形态,对射和散射。
简单直接来讲的话就用两个波长对应的管子对着,烟雾经过的时候接受的光强肯定会发生变化,在一些大面积的烟雾检测中有一定的应用。
但是有烟和无烟的状况下光电二极管接收到的光强变化非常小。
测量一个比较大的数值发生微小变化是很困难的,所有我们在测量一些电阻的微小变化时常常使用电桥来将其取出。
光学测量自有光学的办法,比如我们的散射方法。
如图所示,二极管并不相对,暗室中的光源并不能直接照射到接收器上。当烟雾离子进入到暗室中时,大量的大颗粒粒子会散射光源发出的光,使一部分光散射到光电二极管上,形成输出信号。这就是在为0的信号的基础上产生变化了。
目前市面上最常见的烟雾传感器叫做光迷宫式传感器,便是利用这种原理。
光迷宫为何物呢,就是边上的这对黑色一截一截的墙壁,光无法直接照射到暗室内,但是气体却能在缝隙处拐弯进入,进而影响光信号。
总之是实现透气不透光的一种结构。
散射方式
散射方式主要有前向散射、垂直散射和后向散射三种
顾名思义当入射光和散射光的夹角大于 90°为前向散射迷宫,等于 90°为垂直散射迷宫,小于90°为后向散射迷宫
现有的传感器常常采用前向散射,散射角135°
简述火灾烟雾的散射
可以将烟雾颗粒视为插入均匀空气介质中的其他介质,利用电磁场理论描述烟雾颗粒对光的散射。
如图所示3,入射波和出射波应当满足
E
2
=
E
i
+
E
s
,
H
2
=
H
i
+
H
s
E_2 = E_i+E_s,H_2 = H_i+H_s
E2=Ei+Es,H2=Hi+Hs
设
E
i
=
E
0
e
x
p
(
i
k
⋅
x
−
i
ω
t
)
,
H
i
=
H
0
e
x
p
(
i
k
⋅
x
−
i
ω
t
)
E_i = E_0 exp(ik\cdot x - i\omega t),H_i = H_0exp(ik\cdot x - i\omega t)
Ei=E0exp(ik⋅x−iωt),Hi=H0exp(ik⋅x−iωt)
又有
(
E
2
,
H
2
)
,
(
E
i
,
H
i
)
,
(
E
s
,
H
s
)
(E_2,H_2),(E_i,H_i),(E_s,H_s)
(E2,H2),(Ei,Hi),(Es,Hs) 满足Maxwell方程
边界条件为在颗粒边界上的点x以及指向外部的向量
n
^
\hat{n}
n^ 有
[
E
2
(
x
)
−
E
i
(
x
)
]
×
n
^
=
0
[E_2(x) - E_i(x)]\times \hat{n} = 0
[E2(x)−Ei(x)]×n^=0
[
H
2
(
x
)
−
H
i
(
x
)
]
]
×
n
^
=
0
[H_2(x) - H_i(x)]]\times \hat {n} = 0
[H2(x)−Hi(x)]]×n^=0
在远场近似条件下(kr>>1)的解的形式为
E
s
e
i
k
r
−
i
k
r
A
,
k
r
>
>
1
E_s~\frac{e^{ikr}}{-ikr}A,kr >> 1
Es −ikreikrA,kr>>1
其中A为垂直于径向的矢量。
因此在远场区域,散射场和入射场满足变换关系式
( E ∥ s E ⊥ s ) = e i k ( r − x ) − i k r ( S 2 S 3 S 4 S 1 ) [ E ∥ i E ⊥ i ] \begin{pmatrix} E_{\parallel s} \\ E_{\perp s} \end{pmatrix} = \frac{e^{ik(r-x)}}{-ikr} \begin{pmatrix} S_2&S_3\\S_4&S_1 \end{pmatrix}[E_{\parallel i} \ \ \ \ \ E_{\perp i}] (E∥sE⊥s)=−ikreik(r−x)(S2S4S3S1)[E∥i E⊥i]
其中的矩阵S取决于烟雾颗粒的形状、介电常数、磁导率等物理性质,影响散射角和方位角。
广告时间:
书籍:物联网之芯:传感器件与通信芯片设计
书籍:传感器及其应用