一、认知篇:为什么营销人必须掌握DeepSeek?
1.1 传统营销痛点与AI破局
在电话营销、客户开发等场景中,人工筛选线索效率低(日均仅处理100-200条)、客户画像模糊(60%沟通时间浪费在无效客户)、话术同质化严重(转化率普遍低于5%)。而DeepSeek通过以下能力实现突破:
- 智能线索挖掘:5分钟完成10万级企业数据清洗,筛选出行业匹配、规模适配的目标客户()
- 动态客户画像:基于企业官网、财报、舆情数据生成客户需求预测模型(准确率85%+)
- 话术智能优化:根据客户行业特性生成200+版本定制化沟通模板()
1.2 DeepSeek的核心功能矩阵
功能模块 | 营销场景应用举例 | 效率提升幅度 |
---|---|---|
数据智能分析 | 批量提取企业联系方式并分类分级 | 速度x50倍 |
NLP文本生成 | 自动生成电销话术/邮件模板/产品说明书 | 耗时减少80% |
预测性建模 | 预判客户采购周期与预算敏感度 | 转化率+30% |
自动化流程 | 搭建客户跟进SOP并触发提醒 | 漏跟率降90% |
二、7天实战计划:每日任务与操作详解
Day 1:掌握DeepSeek基础操作
目标:完成账号注册、熟悉交互界面、理解提问逻辑
实操步骤:
- 注册与登录
- 访问官网(www.deepseek.com),选择“企业版”注册(需提供企业邮箱验证)
- 首次登录后进入“新手引导”,完成“营销助手”角色配置(选择行业、业务类型等参数)
- 核心界面认知
- 智能问答区:输入需求指令的核心交互窗口
- 模板中心:内置“客户开发”“竞品分析”等20+营销场景模板
- 数据看板:实时展示客户触达量、响应率等关键指标(需连接CRM系统)
- 提问黄金法则
- 错误示范:“帮我找客户联系方式” → 结果模糊
- 正确指令:“作为机械设备行业销售,需要获取长三角地区员工规模50-200人的注塑机生产企业联系方式,包含采购负责人姓名、电话、邮箱,按2024年产值排序导出Excel”
Day 2:批量获取精准客户信息
目标:3小时完成传统3天的客户数据采集
操作案例:
【指令模板】
你是我在工业自动化行业的销售助理,请完成以下任务:
1. 从以下渠道抓取目标企业信息:
- 行业协会公开名录(中国塑料机械工业协会2024版)
- 百度爱采购前5页商家
- 天眼查筛选条件:注册资本>500万,成立年限>5年
2. 输出字段:公司名称/地址/主营产品/联系电话/官网地址
3. 排除已合作客户(附件上传客户清单)
4. 按“潜在需求强度”排序(参考:产品线匹配度+近期扩产新闻)
要求:生成可直接导入CRM系统的CSV文件
技术原理:
- 通过RPA(机器人流程自动化)模拟人工搜索行为
- 使用NER(命名实体识别)技术提取关键字段
- 结合知识图谱分析企业关联性(如供应商关系、竞品重叠度)
Day 3:构建客户需求分析模型
目标:从海量数据中定位高价值客户
关键动作:
- 数据输入:上传企业公开数据(财报/招标公告/舆情监测)
- 需求预测指令:
分析附件中100家包装机械企业的需求紧迫性:
1. 使用三级评估模型:
- 一级指标:设备更新周期(根据财报折旧率计算)
- 二级指标:产能利用率(对比行业平均值±20%)
- 三级指标:管理层AI转型表态(舆情情感分析)
2. 输出TOP20高潜力客户清单
3. 标注每家企业的决策链关键人(使用天眼查股权穿透数据)
输出示例:
企业名称 | 更新周期 | 产能利用率 | 转型倾向 | 综合评分 | 关键联系人 |
---|---|---|---|---|---|
XX机械制造 | 2.1年 | 85%↑ | 积极 | 9.2 | 张总(副总) |
Day 4:生成定制化营销内容
目标:为不同客户生成千人千面的沟通素材
场景案例:针对阀门制造企业客户
【指令模板】
你是我公司的阀门产品线营销专家,需制作针对石油化工行业客户的推广资料:
1. 生成3版差异化话术:
- A版:突出耐高压性能(参考客户近期中标页岩气项目)
- B版:强调快速交付能力(结合客户所在地物流数据分析)
- C版:主打售后服务体系(针对客户现有设备报修记录)
2. 输出格式:
- 电话沟通提纲(含异议处理问答库)
- 产品对比PDF(与客户现用竞品的参数对比图)
- 定制化报价单(按客户采购量级设置阶梯折扣)
生成技巧:
- 添加风格指令:“使用技术型客户偏好的数据论证+案例佐证”
- 规避风险:“删除所有绝对化用语,符合《广告法》第23条”
Day 5:搭建客户互动自动化流程
目标:实现从初次接触到成交转化的全流程自动化
SOP配置示例:
- 初次触达阶段
- 自动发送个性化邮件(附件含产品白皮书+成功案例)
- 48小时后触发短信提醒:“张经理您好,我们的节流阀解决方案可帮助贵司降低15%维护成本,点击查看视频演示→【短链接】”
- 深度沟通阶段
-
根据客户打开邮件次数自动调整话术:
-
未打开→改发微信图文消息
-
打开≥3次→触发人工跟进提醒
- 成交转化阶段
- 自动生成合同草案(填充客户信息+定制条款)
- 逾期未回款时发送智能催款函(语气强度按账期动态调整)
Day 6:多工具协同实战
组合应用案例:
DeepSeek+PowerBI+微信机器人:
1. DeepSeek分析客户行为数据 → 生成《高意向客户特征报告》
2. PowerBI自动更新可视化看板(大屏展示区域热度/产品偏好)
3. 微信机器人定时推送日报(含今日待跟进客户清单+话术建议)
效率对比:
环节 | 传统耗时 | AI协同耗时 |
---|---|---|
日报制作 | 2小时 | 5分钟 |
客户分级 | 3小时 | 实时更新 |
异常预警 | 人工排查 | 自动触发 |
Day 7:数据复盘与策略优化
核心方法论:
- 效果归因分析
【指令模板】
分析Q2电话营销转化率下降12%的原因:
1. 使用三层归因模型:
- 外部层:宏观经济指数/行业景气度
- 竞品层:对手促销活动监测(爬取公开招标数据)
- 执行层:话术有效性测试(A/B测试数据对比)
2. 输出优化建议:至少包含话术调整、触达时段优化、客户分层策略
- 迭代升级策略
-
每月更新客户标签体系(新增“碳中和政策响应度”等维度)
-
建立动态知识库:自动收录成功案例到话术推荐库
三、避坑指南:营销人必知的5大风险点
- 数据合规红线
- 禁止直接爬取个人隐私信息(需通过企查查等授权接口获取)
- 使用脱敏指令:“隐藏联系电话中间四位,如138****5678”
- 内容同质化陷阱
- 添加差异化指令:“在话术中插入客户所在城市的地域文化元素”
- 定期人工审核:标记优质生成内容供AI学习
- 过度依赖预警
- 设置人工复核节点(如报价单超过10万元需经理审批)
- 建立异常数据筛查规则(如同一IP地址批量查询自动冻结)
- 知识库更新机制
- 每月上传最新行业报告(提示:“以下内容需同步到产品知识库”)
- 淘汰过期信息(自动标注两年未触达客户为休眠状态)
- 客户体验平衡
- 设置人性化指令:“在催款函第二段添加天气关怀用语”
- 避免高频触达(按客户打开率动态调整发送频率)
四、延伸学习:推荐掌握的3类高阶技能
- Prompt工程进阶
- 学习链式思考指令:“先列举5种可能的客户拒绝理由,再逐条生成应对策略”
- 掌握变量调用:在话术中插入{公司名称}{行业痛点}等动态字段
- API接口开发
- 将DeepSeek接入企业微信/钉钉(减少平台切换损耗)
- 构建自动化流水线:客户点击邮件链接→自动推送样品申请表单
- 行业知识图谱构建
- 建立“设备制造商→上游供应商→下游客户”关联网络
- 实时监控产业链动态(如原材料涨价触发替代方案推荐)
结语:通过7天系统性学习,即使是零基础营销人员也可快速实现从日均50条手工外呼到500条智能触达的跨越。建议每周选择1-2个功能模块深度实践,3个月内可构建完整的AI营销体系。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。