Python人工智能实例 │ 使用光流法进行人脸追踪(附代码)

本文介绍了使用光流法进行人脸追踪的背景知识,包括光流法和Lucas-Kanade算法的概念,以及角点检测的重要性。提供了Python实现代码,并展示了运行结果,详细解析了代码流程,包括特征点检测、光流计算和角点轨迹绘制。
摘要由CSDN通过智能技术生成

导语

哈喽铁汁萌今天小编准备给大家带来一篇使用光流法进行人脸追踪!感兴趣的可以往下滑了👇👇

 

一、背景知识

光流法

目前,光流(optical flow)法是运动图像分析的重要方法之一,它是由James J. Gibson于20世纪40年代首先提出的。它是像素的运动瞬时速度,即空间中的运动物体在观察平面上的像素运动的瞬时速度。光流利用图像序列中像素在时间域上的变化与相邻帧之间的相关性,找到当前帧跟上一帧之间存在的对应关系,从而计算出相邻帧之间的物体运动信息。

在计算机视觉中,Lucas–Kanade算法是一种两帧差分的光流估计算法,它是由Bruce D. Lucas和Takeo Kanade提出的。这个算法是目前最常见、最流行的。它计算两帧在时间在t~t + δt每个像素位置的移动。由于它基于图像信号的泰勒级数,这种方法称为差分,也就是对空间和时间坐标使用偏导数。Lucas-Kanade算法广泛用于图像对齐、光流法、目标追踪、图像拼接和人脸检测等课题中。

2角点检测

角点检测(corner detection)是计算机视觉系统中用来获得图像特征的一种方法,也称为特征点检测。常用的角点检测算法有Harris和Shi-Tomasi,本例中用的就是Shi-Tomasi角点检测算法。

角点通常被定义为两条边的交点。例如,三角形有三个角,矩形

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值