数据分析 | 频率编码和标签编码 | Python代码

数据集见GitHub链接:https://github.com/ChuanTaoLai/Frequency-Encoding-And-Label-Encoding

标签编码:

import pandas as pd
from sklearn.preprocessing import LabelEncoder

data1 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTrain.xlsx')
data2 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTest_without_unkown.xlsx')

'''标签编码'''
label_encoder = LabelEncoder()
df1 = pd.DataFrame()
df2 = pd.DataFrame()

df1['Attack_Types'] = label_encoder.fit_transform(data1['Attack_Types'])
df2['Attack_Types'] = label_encoder.transform(data2['Attack_Types'])

df1.to_excel('KDDTrain_label_encoded.xlsx', index=False)
df2.to_excel('KDDTest_label_encoded.xlsx', index=False)

频率编码:

import pandas as pd

data1 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTrain.xlsx')
data2 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTest_without_unkown.xlsx')

df1 = data1[['protocol_type', 'service', 'flag']].copy()
df2 = data2[['protocol_type', 'service', 'flag']].copy()

'''频率编码'''
for col in df1.columns:
    df1[col + '_frequency_encoded'] = df1[col].map(df1[col].value_counts(normalize=True))

for col in df2.columns:
    df2[col + '_frequency_encoded'] = df2[col].map(df2[col].value_counts(normalize=True))

df1.to_excel('KDDTrain_frequency_encoded.xlsx', index=False)
df2.to_excel('KDDTest_frequency_encoded.xlsx', index=False)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值