“线段树,也叫区间树,是一个完全二叉树,它在各个节点保存一条线段(即“子数组”),因而常用于解决数列维护问题,它基本能保证每个操作的复杂度为O(lgN)。”
“线段树并不适合所有区间查询情况,它的使用条件是“相邻的区间的信息可以被合并成两个区间的并区间的信息”。即问题是可以被分解解决的。”
摘自董的博客,讲的很好
HDU4027有一点不同的是,他的 区间更新操作 要做的是把每个数开平方根向下取整
代码来自:http://blog.163.com/just_gogo/blog/static/191439065201181072049741/
#include<stdio.h>
#include<math.h>
typedef __int64 int64;
const int maxn = 100010;
int64 Mi[maxn];
typedef struct{
int left,right;
int64 sum,len;
}STNode;
STNode node[maxn<<2];
void build(int l,int r,int root){
node[root].left = l;
node[root].right = r;
node[root].len = r-l+1;
if(l==r){
node[root].sum = Mi[l];
return;
}
int m = (l+r) >> 1;
build(l,m,root<<1);
build(m+1,r,root<<1|1);
node[root].sum = node[root<<1].sum + node[root<<1|1].sum;
}
void update(int l,int r,int root){
if(node[root].left == node[root].right){
node[root].sum = (int64)sqrt((double)node[root].sum);
return;
}
if(node[root].left == l && node[root].right==r){
if(node[root].len == node[root].sum) return;
}
int m = (node[root].left + node[root].right) >> 1;
if(r <= m)update(l,r,root<<1);
else if(l > m)update(l,r,root<<1|1);
else {
update(l,m,root<<1);
update(m+1,r,root<<1|1);
}
node[root].sum = node[root<<1].sum + node[root<<1|1].sum;
}
int64 query(int l,int r,int root){
if(node[root].left==l && node[root].right==r){
return node[root].sum;
}
int m = (node[root].left+node[root].right) >> 1;
if(r <= m)return query(l,r,root<<1);
else if(l > m)return query(l,r,root<<1|1);
else return query(l,m,root<<1)+query(m+1,r,root<<1|1);
}
void swap(int &a,int &b){
int tmp=a; a=b; b=tmp;
}
int main()
{
int i,n,m,time=1;
int op,a,b;
while(~scanf("%d",&n)){
printf("Case #%d:\n",time++);
for(i=1;i<=n;i++){
scanf("%I64d",&Mi[i]);
}
build(1,n,1);
scanf("%d",&m);
for(i=0;i<m;i++){
scanf("%d%d%d",&op,&a,&b);
if(a>b)swap(a,b);
if(op==1)printf("%I64d\n",query(a,b,1));
else update(a,b,1);
}puts("");
}
return 0;
}