咱们熟悉的四则运算表达式,中缀表达式,例如 (12+3)*2-6/2
利用堆栈的方法把中缀表达式转换成保值的后缀表达式(又称逆波兰表示法),并最终变为计算机可以直接执行的指令,得到表达式的值
挺简单的不假,也好理解,但就是一直无缘无故的卡着,卡的蛋疼……
也不能说完全的无缘无故,其实是手生了吧,太生了……
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<stack>
using namespace std;
#define N 1000
char infix[N]; //中缀表达式(未分离,都在一个字符串里)
char expression[N][10]; //保存预处理过的表达式,也就是每个元素都分离过的表达式
char suffix[N][10]; //保存后缀表达式的操作数
int count;//表达式中元素的个数(一个完整到数字(可能不止一位数)或者符号)
int suffixLength;//后缀表达式的长度
int level(char a){
switch(a){
case '#':return 0;
case '+':
case '-':return 1;
case '*':
case '/':return 2;
case '^':return 3;
default:break;
}
return -1;
}
int isDigital(char x){
if( (x>='0'&&x<='9') || (x>='A'&&x<='Z') || (x>='a'&&x<='z') || (x=='.') )
return 1;
return 0;
}
int isNumber(char *str){
int i;
for(i=0;str[i];i++){
if(isDigital(str[i])==0)return 0;
}
return 1;
}
/*************************************
预处理中缀表达式,把连续的字符分离成不同的元素,用字符串数组(expression[][])
保存,方便后面的计算,因为这里考虑了运算数可能不全是个位数
比如:(12+3)
在处理成后缀表达式时,是123+,容易产生歧义(1+23 ? 12+3)
*************************************/
void pretreatment(char *str){
int i,j,numberFlag;
char temp[3];
char number[10];
count=0;
numberFlag=0;
for(j=0,i=0;str[i];i++){
if(isDigital(str[i])==0){
if(numberFlag==1){
number[j]=0;
strcpy(expression[count++],number);
j=0;
numberFlag=0;
}
if(str[i]!=' '){
temp[0]=str[i];temp[1]=0;
strcpy(expression[count++],temp);
}
}
else {
numberFlag=1;
number[j++]=str[i];
}
}
puts("分离后的表达式为");
for(i=0;i<count;i++){
printf("%s ",expression[i]);
}puts("");
puts("");
}
/*****************************************
中缀表达式 转 后缀表达式
遍历字符串,对于str[i]
str[i]是运算数(或者是字母代替的运算变量)输出;
str[i]是符号,有两种情况
(1),是右括号,栈顶元素输出,直到与str[i]匹配的左括号出栈(左括号不用输出打印)
(2),是运算符,判断str[i]与栈顶元素的优先级,str[i]优先级 不高于 栈顶符号,则栈
顶元素输出,直到栈空 或者 栈顶符号优先级低于str[i]
*****************************************/
void infix_to_suffix(char str[N][10]){
memset(suffix,0,sizeof(suffix));
suffixLength=0;
stack <char*> st;
int i=0;
char Mark[2]="#";
st.push(Mark);
do{
if(isNumber(str[i])==1)//运算数直接保存到后缀表达式中
strcpy(suffix[suffixLength++],str[i]);
else if(str[i][0]=='(') //是 左括号,直接入栈
st.push(str[i]);
else if(str[i][0]==')'){ //是 右括号,栈顶出栈,直到与其匹配的左括号出栈
while( strcmp(st.top(),"(")!=0 ){
char temp[10];
strcpy(temp,st.top());
strcpy(suffix[suffixLength++],temp);
st.pop();
}
st.pop();
}
else if( strcmp(st.top(),"(")==0 )//是 运算符,且栈顶是左括号,则该运算符直接入栈
st.push(str[i]);
else { //是 运算符,且栈顶元素优先级不小于运算符,则栈顶元素一直
//出栈,直到 栈空 或者 遇到一个优先级低于该运算符的元素
while( !st.empty() ){
char temp[10];
strcpy(temp,st.top());
if( level(str[i][0]) > level(temp[0]) )
break;
strcpy(suffix[suffixLength++],temp);
st.pop();
}
st.push(str[i]);
}
i++;
}while(str[i][0]!=0);
while( strcmp(st.top(),"#")!=0 ){ //将栈取空结束
char temp[10];
strcpy(temp,st.top());
strcpy(suffix[suffixLength++],temp);
st.pop();
}
puts("后缀表达式为:");
for(i=0;i<suffixLength;i++){
printf("%s",suffix[i]);
}puts("");
puts("");
}
/**************************************
计算后缀表达式的值
**************************************/
char kt[N][10];
int stackTop;
void getResult(char str[N][10]){
stackTop=0;
/*这里要注意,内存的分配方案导致 i 的位置就在temp[9]旁边,然后strcpy()函数直接拷贝内存的话,在temp越界情况下会覆盖 i 的值*/
int i;
char temp[10];
for(i=0;i<suffixLength;i++){
if(isNumber(str[i])==1){
strcpy(kt[stackTop++],str[i]);
}
else {
char a[10],b[10];
double na,nb,nc;
strcpy(a,kt[stackTop-1]);
na = atof(a);
stackTop--;
strcpy(b,kt[stackTop-1]);
nb = atof(b);
stackTop--;
if(str[i][0]=='+')nc=nb+na;
else if(str[i][0]=='-')nc=nb-na;
else if(str[i][0]=='*')nc=nb*na;
else if(str[i][0]=='/')nc=nb/na;
sprintf(temp,"%lf",nc);
strcpy(kt[stackTop++],temp);
}
}
puts("计算出后缀表达式的结果:");
printf("%s\n",kt[stackTop-1]);
}
int main(){
char temp[N];
while(gets(infix)){
strcpy(temp,infix);
pretreatment( strcat(temp," ") );
infix_to_suffix(expression);
getResult(suffix);
}
return 0;
}