从零点一开始机器学习之GPU运算性能和CPU性能对比(GPU算力表)

系列文章目录

从零点一开始机器学习之晦涩难懂的各种概念
从零点一开始机器学习之Win10 64位下安装Cuda+Cudnn
从零点一开始机器学习之GPU运算性能和CPU性能对比(GPU算力表)
从零点一开始机器学习之TF1.0版本HDF5转换为saved_model
从零点一开始机器学习之HDF5模型发布到tensorflow/serving
Python中tensorflow Import使用错误集合

机器学习之Win10 64位下安装Cuda+Cudnn文中,我们已经简单的阐述了一下gpu在机器学习中性能好于cpu,但是到底有多大的差距呢?刚开始的同学没有一个直观的认识(主要是我自己也没有直观的认识),在此记录一下吧。
我们采用同样的一个简单的基于VGG16的图像分类代码来对比一下,如果有误导或者理解不到位的地方,恳请指正,谢谢!服务器虽然有点旧,但是还是可以看出问题的!
图像分三类,每一类图像3800张左右,batch_size均为25(最好为2的次方数)


CPU服务器一


  • 服务器配置
    在这里插入图片描述
    选取epoch5-15查看计算用时
    在这里插入图片描述

CPU服务器二


  • 服务器配置
    在这里插入图片描述

选取epoch5-15查看计算用时

在这里插入图片描述

GPU计算机一


  • 服务器配置
    在这里插入图片描述
    显卡规格
    在这里插入图片描述

选取epoch5-15查看计算用时
在这里插入图片描述
在用gpu进行计算的时候,观察cpu也有40%左右的占用率,不是说好用gpu计算的吗?应该是cpu也进行了一些TensorFlow其他的计算吧。
可以看出一张算力6.1的1050卡,基本上是10+倍8核E5cpu的性能。
-后记 还有一个GT730的卡,辛辛苦苦花了很多时间装好了环境,一运行居然告诉我算力只有3.5,cuda最低要求为3.7,新手同学可以查询一下显卡算力免得浪费功夫装很久环境!Cuda compute capability 3.5. The minimum required Cuda capability is 3.7。

国产CPUGPU与国际品牌之间的性能差距主要体现在制程技术、核心架构、生态兼容性效率等方面。例如,国产CPU在频率、核心数、缓存容量等方面可能与国际主流的X86架构CPU存在定的差距,而国产GPU在图形处理能、AI计优化等方面也可能不及英伟达AMD的产品。不过,国产硬件厂商正通过技术创新市场策略来缩小这些差距。 参考资源链接:[计机行业报告:硬件与软件齐飞,开启国产化新篇章](https://wenku.csdn.net/doc/4nxargpehb?spm=1055.2569.3001.10343) 在数字化转型的过程中,国产CPUGPU实现突破的路径包括以下几个方面:首先,通过加大研发投入,不断提高自主核心技术知识产权的比重,如龙芯中科、海光信息等企业在不断改进自研的CPUGPU架构。其次,强化与国内软件生态的对接,例如开发兼容国产CPUGPU的操作系统应用软件,以提升整体的生态竞争。同时,国产硬件厂商在特定市场领域,如国家安全、云计等,通过提供定制化解决方案来满足特定需求,并在这些领域实现应用突破。 此外,政府的政策扶持技术标准引导也在推动国产CPUGPU的发展。通过国家科技项目的支持优先采购政策,国产硬件厂商得以获得资金市场的双重保障,加速创新产品迭代。长期而言,随着技术的不断进步产业链的不断完善,国产CPUGPU有望在性能上达到或超越国际品牌,实现在数字化转型中的广泛应用。 参考资源链接:[计机行业报告:硬件与软件齐飞,开启国产化新篇章](https://wenku.csdn.net/doc/4nxargpehb?spm=1055.2569.3001.10343)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值