互信息(Mutual Information)是信息论里一种有用的信息度量,它可以看成是一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于已知另一个随机变量而减少的不肯定性。这是百度百科的定义,本文的重点是从不同的角度去理解互信息,介绍一些基本的规律,为了简单本文只对其离散的情况考虑。
在介绍互信息前首先更应该知道什么是信息熵,信息熵是香农从物理理论中的热熵引入到信息论中的,热熵是一种描述分子状态混乱程度的物理量,信息论中的熵是对信源不确定性的描述,是对体系信息量的表示。熵的定义:
![熵定义](https://img-blog.csdn.net/20150330204643565)其中Pi表示信源中信号i出现的概率。
互信息的角度,一个随机变量的引入,对于另一个随机变量混乱度降低量的。一个事件的引入,消除另一个事件的不确定性。
信息增益的角度,与互信息相似,计算某个特征是否命中前,样本的分布拥有一个信息熵,计算后计算命中特征样本与未命中样本特征的信息增益,然后计算出计算后熵的期望,计算前后的熵差就是信息增益。
另外互信息是具有非负性的,证明:![这里写图片描述](https://img-blog.csdn.net/20150330210536018)
浅析互信息(信息增益)
最新推荐文章于 2024-09-10 17:31:32 发布